单、多基地雷达覆盖面积定量预测方法

M. Inggs, Gunther Lange, Y. Paichard
{"title":"单、多基地雷达覆盖面积定量预测方法","authors":"M. Inggs, Gunther Lange, Y. Paichard","doi":"10.1109/RADAR.2010.5494532","DOIUrl":null,"url":null,"abstract":"The prediction of radar coverage as a function of the position of the radar has always been a key step in radar network planning. In the past, simple geometric models backed up by the deployment of siting radars were the only options for potential site evaluation, but the development of sophisticated propagation models (e.g. AREPS [1]) has moved the technology forward to another level of prediction accuracy. Modelling takes into account atmospheric refraction, as well as terrain effects and clutter. In previous papers [2], [3] we have shown that the modelling can also cater for multistatic radar systems. In this paper we have extended our modelling to give a statistical measure of the effectiveness of a site that measures the signal to noise ratio (SNR) or (for multistatic radar) the signal to interference ratio (SIR) over regions of interest. The area is pixellated into values of SNR and SIR, and pixels meeting the required SNR and / SIR are counted. We show some results for a multistatic radar. We conclude by indicating how we plan to include ground clutter. We mention how this method of obtaining quantitative coverage performance can be used with all forms of radar, and will be able to improve future networks of cognitive radars.","PeriodicalId":125591,"journal":{"name":"2010 IEEE Radar Conference","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"A quantitative method for mono- and multistatic radar coverage area prediction\",\"authors\":\"M. Inggs, Gunther Lange, Y. Paichard\",\"doi\":\"10.1109/RADAR.2010.5494532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The prediction of radar coverage as a function of the position of the radar has always been a key step in radar network planning. In the past, simple geometric models backed up by the deployment of siting radars were the only options for potential site evaluation, but the development of sophisticated propagation models (e.g. AREPS [1]) has moved the technology forward to another level of prediction accuracy. Modelling takes into account atmospheric refraction, as well as terrain effects and clutter. In previous papers [2], [3] we have shown that the modelling can also cater for multistatic radar systems. In this paper we have extended our modelling to give a statistical measure of the effectiveness of a site that measures the signal to noise ratio (SNR) or (for multistatic radar) the signal to interference ratio (SIR) over regions of interest. The area is pixellated into values of SNR and SIR, and pixels meeting the required SNR and / SIR are counted. We show some results for a multistatic radar. We conclude by indicating how we plan to include ground clutter. We mention how this method of obtaining quantitative coverage performance can be used with all forms of radar, and will be able to improve future networks of cognitive radars.\",\"PeriodicalId\":125591,\"journal\":{\"name\":\"2010 IEEE Radar Conference\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Radar Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RADAR.2010.5494532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Radar Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2010.5494532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

雷达覆盖作为雷达位置函数的预测一直是雷达网规划的关键步骤。过去,选址雷达部署支持的简单几何模型是潜在选址评估的唯一选择,但复杂传播模型(例如AREPS[1])的发展已将该技术推进到另一个预测精度水平。建模考虑了大气折射,以及地形效应和杂波。在以前的论文[2],[3]中,我们已经表明,建模也可以满足多基地雷达系统。在本文中,我们扩展了我们的模型,给出了一个站点有效性的统计度量,该站点测量感兴趣区域上的信噪比(SNR)或(对于多基地雷达)信干扰比(SIR)。将该区域像素化为信噪比和SIR值,并计算满足要求的信噪比和/ SIR的像素。我们展示了多基地雷达的一些结果。最后,我们指出我们计划如何包括地杂波。我们提到了这种获得定量覆盖性能的方法如何与所有形式的雷达一起使用,并将能够改进未来的认知雷达网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A quantitative method for mono- and multistatic radar coverage area prediction
The prediction of radar coverage as a function of the position of the radar has always been a key step in radar network planning. In the past, simple geometric models backed up by the deployment of siting radars were the only options for potential site evaluation, but the development of sophisticated propagation models (e.g. AREPS [1]) has moved the technology forward to another level of prediction accuracy. Modelling takes into account atmospheric refraction, as well as terrain effects and clutter. In previous papers [2], [3] we have shown that the modelling can also cater for multistatic radar systems. In this paper we have extended our modelling to give a statistical measure of the effectiveness of a site that measures the signal to noise ratio (SNR) or (for multistatic radar) the signal to interference ratio (SIR) over regions of interest. The area is pixellated into values of SNR and SIR, and pixels meeting the required SNR and / SIR are counted. We show some results for a multistatic radar. We conclude by indicating how we plan to include ground clutter. We mention how this method of obtaining quantitative coverage performance can be used with all forms of radar, and will be able to improve future networks of cognitive radars.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ONERA SAR facilities Naval Multi-Function RADAR Phased array weather / multipurpose radar Angle measurement method for two targets within antenna beam width using two receivers Radar and Electronic Warfare cooperation: How to improve the system efficiency?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1