波动性溢出的稳健得分和组合检验

Mike Aguilar, Jonathan B. Hill
{"title":"波动性溢出的稳健得分和组合检验","authors":"Mike Aguilar, Jonathan B. Hill","doi":"10.2139/ssrn.2003387","DOIUrl":null,"url":null,"abstract":"This paper presents a variety of tests of volatility spillover that are robust to heavy tails generated by large errors or GARCH-type feedback. The tests are couched in a general conditional heteroskedasticity framework with idiosyncratic shocks that are only required to have a finite variance if they are independent. We negligibly trim test equations, or components of the equations, and construct heavy tail robust score and portmanteau statistics. Trimming is either simple based on an indicator function, or smoothed. In particular, we develop the tail-trimmed sample correlation coefficient for robust inference, and prove that its Gaussian limit under the null hypothesis of no spillover has the same standardization irrespective of tail thickness. Further, if spillover occurs within a specified horizon, our test statistics obtain power of one asymptotically. We discuss the choice of trimming portion, including a smoothed p-value over a window of extreme observations. A Monte Carlo study shows our tests provide significant improvements over extant GARCH-based tests of spillover, and we apply the tests to financial returns data. Finally, based on ideas in Patton (2011) we construct a heavy tail robust forecast improvement statistic, which allows us to demonstrate that our spillover test can be used as a model specification pre-test to improve volatility forecasting.","PeriodicalId":214104,"journal":{"name":"Econometrics: Applied Econometric Modeling in Financial Economics - Econometrics of Financial Markets eJournal","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Robust Score and Portmanteau Tests of Volatility Spillover\",\"authors\":\"Mike Aguilar, Jonathan B. Hill\",\"doi\":\"10.2139/ssrn.2003387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a variety of tests of volatility spillover that are robust to heavy tails generated by large errors or GARCH-type feedback. The tests are couched in a general conditional heteroskedasticity framework with idiosyncratic shocks that are only required to have a finite variance if they are independent. We negligibly trim test equations, or components of the equations, and construct heavy tail robust score and portmanteau statistics. Trimming is either simple based on an indicator function, or smoothed. In particular, we develop the tail-trimmed sample correlation coefficient for robust inference, and prove that its Gaussian limit under the null hypothesis of no spillover has the same standardization irrespective of tail thickness. Further, if spillover occurs within a specified horizon, our test statistics obtain power of one asymptotically. We discuss the choice of trimming portion, including a smoothed p-value over a window of extreme observations. A Monte Carlo study shows our tests provide significant improvements over extant GARCH-based tests of spillover, and we apply the tests to financial returns data. Finally, based on ideas in Patton (2011) we construct a heavy tail robust forecast improvement statistic, which allows us to demonstrate that our spillover test can be used as a model specification pre-test to improve volatility forecasting.\",\"PeriodicalId\":214104,\"journal\":{\"name\":\"Econometrics: Applied Econometric Modeling in Financial Economics - Econometrics of Financial Markets eJournal\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics: Applied Econometric Modeling in Financial Economics - Econometrics of Financial Markets eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2003387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics: Applied Econometric Modeling in Financial Economics - Econometrics of Financial Markets eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2003387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

本文提出了对由大误差或garch型反馈产生的重尾具有鲁棒性的波动性溢出的各种测试。这些测试是在一般的条件异方差框架中进行的,具有特殊的冲击,如果它们是独立的,则只需要具有有限的方差。我们可以忽略检验方程或方程的组成部分,并构建重尾稳健评分和组合统计。修剪要么是简单的基于指示函数,要么是平滑的。特别地,我们开发了用于鲁棒推断的尾部裁剪样本相关系数,并证明了在无溢出的零假设下,其高斯极限与尾部厚度无关,具有相同的标准化。进一步,如果溢出发生在一个特定的视界内,我们的检验统计量渐近地获得1的幂。我们讨论了修剪部分的选择,包括在极端观测值窗口上的平滑p值。蒙特卡罗研究表明,我们的测试比现有的基于garch的溢出测试提供了显着改进,并且我们将测试应用于财务回报数据。最后,基于Patton(2011)的思想,我们构建了一个重尾稳健预测改进统计量,这使我们能够证明我们的溢出检验可以用作模型规范预检验来改进波动率预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust Score and Portmanteau Tests of Volatility Spillover
This paper presents a variety of tests of volatility spillover that are robust to heavy tails generated by large errors or GARCH-type feedback. The tests are couched in a general conditional heteroskedasticity framework with idiosyncratic shocks that are only required to have a finite variance if they are independent. We negligibly trim test equations, or components of the equations, and construct heavy tail robust score and portmanteau statistics. Trimming is either simple based on an indicator function, or smoothed. In particular, we develop the tail-trimmed sample correlation coefficient for robust inference, and prove that its Gaussian limit under the null hypothesis of no spillover has the same standardization irrespective of tail thickness. Further, if spillover occurs within a specified horizon, our test statistics obtain power of one asymptotically. We discuss the choice of trimming portion, including a smoothed p-value over a window of extreme observations. A Monte Carlo study shows our tests provide significant improvements over extant GARCH-based tests of spillover, and we apply the tests to financial returns data. Finally, based on ideas in Patton (2011) we construct a heavy tail robust forecast improvement statistic, which allows us to demonstrate that our spillover test can be used as a model specification pre-test to improve volatility forecasting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Growing Pains: International Instability and Equity Market Returns Valuing American Options Using Fast Recursive Projections Momentum and Reversal: Does What Goes Up Always Come Down? Macro Variables and the Components of Stock Returns Variance Risk Premium and VIX Pricing: A Simple GARCH Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1