Tze Meng Low, Varun Nagaraj Rao, Matthew Kay Fei Lee, Doru-Thom Popovici, F. Franchetti, Scott McMillan
{"title":"第一眼:基于线性代数的三角形计数,没有矩阵乘法","authors":"Tze Meng Low, Varun Nagaraj Rao, Matthew Kay Fei Lee, Doru-Thom Popovici, F. Franchetti, Scott McMillan","doi":"10.1109/HPEC.2017.8091046","DOIUrl":null,"url":null,"abstract":"Linear algebra-based approaches to exact triangle counting often require sparse matrix multiplication as a primitive operation. Non-linear algebra approaches to the same problem often assume that the adjacency matrix of the graph is not available. In this paper, we show that both approaches can be unified into a single approach that separates the data format from the algorithm design. By not casting the triangle counting algorithm into matrix multiplication, a different algorithm that counts each triangle exactly once can be identified. In addition, by choosing the appropriate sparse matrix format, we show that the same algorithm is equivalent to the compact-forward algorithm attained assuming that the adjacency matrix of the graph is not available. We show that our approach yields an initial implementation that is between 69 and more than 2000 times faster than the reference implementation. We also show that the initial implementation can be easily parallelized on shared memory systems.","PeriodicalId":364903,"journal":{"name":"2017 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"First look: Linear algebra-based triangle counting without matrix multiplication\",\"authors\":\"Tze Meng Low, Varun Nagaraj Rao, Matthew Kay Fei Lee, Doru-Thom Popovici, F. Franchetti, Scott McMillan\",\"doi\":\"10.1109/HPEC.2017.8091046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Linear algebra-based approaches to exact triangle counting often require sparse matrix multiplication as a primitive operation. Non-linear algebra approaches to the same problem often assume that the adjacency matrix of the graph is not available. In this paper, we show that both approaches can be unified into a single approach that separates the data format from the algorithm design. By not casting the triangle counting algorithm into matrix multiplication, a different algorithm that counts each triangle exactly once can be identified. In addition, by choosing the appropriate sparse matrix format, we show that the same algorithm is equivalent to the compact-forward algorithm attained assuming that the adjacency matrix of the graph is not available. We show that our approach yields an initial implementation that is between 69 and more than 2000 times faster than the reference implementation. We also show that the initial implementation can be easily parallelized on shared memory systems.\",\"PeriodicalId\":364903,\"journal\":{\"name\":\"2017 IEEE High Performance Extreme Computing Conference (HPEC)\",\"volume\":\"122 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE High Performance Extreme Computing Conference (HPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPEC.2017.8091046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2017.8091046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
First look: Linear algebra-based triangle counting without matrix multiplication
Linear algebra-based approaches to exact triangle counting often require sparse matrix multiplication as a primitive operation. Non-linear algebra approaches to the same problem often assume that the adjacency matrix of the graph is not available. In this paper, we show that both approaches can be unified into a single approach that separates the data format from the algorithm design. By not casting the triangle counting algorithm into matrix multiplication, a different algorithm that counts each triangle exactly once can be identified. In addition, by choosing the appropriate sparse matrix format, we show that the same algorithm is equivalent to the compact-forward algorithm attained assuming that the adjacency matrix of the graph is not available. We show that our approach yields an initial implementation that is between 69 and more than 2000 times faster than the reference implementation. We also show that the initial implementation can be easily parallelized on shared memory systems.