Jochen Stiasny, Samuel C. Chevalier, Spyros Chatzivasileiadis
{"title":"无数据学习:用于快速时域仿真的物理信息神经网络","authors":"Jochen Stiasny, Samuel C. Chevalier, Spyros Chatzivasileiadis","doi":"10.1109/SmartGridComm51999.2021.9631995","DOIUrl":null,"url":null,"abstract":"In order to drastically reduce the heavy computational burden associated with time-domain simulations, this paper introduces a Physics-Informed Neural Network (PINN) to directly learn the solutions of power system dynamics. In contrast to the limitations of classical model order reduction approaches, commonly used to accelerate time-domain simulations, PINNs can universally approximate any continuous function with an arbitrary degree of accuracy. One of the novelties of this paper is that we avoid the need for any training data. We achieve this by incorporating the governing differential equations and an implicit Runge-Kutta (RK) integration scheme directly into the training process of the PINN; through this approach, PINNs can predict the trajectory of a dynamical power system at any discrete time step. The resulting Runge-Kutta-based physics-informed neural networks (RK-PINNs) can yield up to 100 times faster evaluations of the dynamics compared to standard time-domain simulations. We demonstrate the methodology on a single-machine infinite bus system governed by the swing equation. We show that RK-PINNs can accurately and quickly predict the solution trajectories.","PeriodicalId":378884,"journal":{"name":"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Learning without Data: Physics-Informed Neural Networks for Fast Time-Domain Simulation\",\"authors\":\"Jochen Stiasny, Samuel C. Chevalier, Spyros Chatzivasileiadis\",\"doi\":\"10.1109/SmartGridComm51999.2021.9631995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to drastically reduce the heavy computational burden associated with time-domain simulations, this paper introduces a Physics-Informed Neural Network (PINN) to directly learn the solutions of power system dynamics. In contrast to the limitations of classical model order reduction approaches, commonly used to accelerate time-domain simulations, PINNs can universally approximate any continuous function with an arbitrary degree of accuracy. One of the novelties of this paper is that we avoid the need for any training data. We achieve this by incorporating the governing differential equations and an implicit Runge-Kutta (RK) integration scheme directly into the training process of the PINN; through this approach, PINNs can predict the trajectory of a dynamical power system at any discrete time step. The resulting Runge-Kutta-based physics-informed neural networks (RK-PINNs) can yield up to 100 times faster evaluations of the dynamics compared to standard time-domain simulations. We demonstrate the methodology on a single-machine infinite bus system governed by the swing equation. We show that RK-PINNs can accurately and quickly predict the solution trajectories.\",\"PeriodicalId\":378884,\"journal\":{\"name\":\"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartGridComm51999.2021.9631995\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm51999.2021.9631995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Learning without Data: Physics-Informed Neural Networks for Fast Time-Domain Simulation
In order to drastically reduce the heavy computational burden associated with time-domain simulations, this paper introduces a Physics-Informed Neural Network (PINN) to directly learn the solutions of power system dynamics. In contrast to the limitations of classical model order reduction approaches, commonly used to accelerate time-domain simulations, PINNs can universally approximate any continuous function with an arbitrary degree of accuracy. One of the novelties of this paper is that we avoid the need for any training data. We achieve this by incorporating the governing differential equations and an implicit Runge-Kutta (RK) integration scheme directly into the training process of the PINN; through this approach, PINNs can predict the trajectory of a dynamical power system at any discrete time step. The resulting Runge-Kutta-based physics-informed neural networks (RK-PINNs) can yield up to 100 times faster evaluations of the dynamics compared to standard time-domain simulations. We demonstrate the methodology on a single-machine infinite bus system governed by the swing equation. We show that RK-PINNs can accurately and quickly predict the solution trajectories.