WSMeter: Google生产仓库级计算机的性能评估方法

Jaewon Lee, Changkyun Kim, Kun Lin, Liqun Cheng, R. Govindaraju, Jangwoo Kim
{"title":"WSMeter: Google生产仓库级计算机的性能评估方法","authors":"Jaewon Lee, Changkyun Kim, Kun Lin, Liqun Cheng, R. Govindaraju, Jangwoo Kim","doi":"10.1145/3173162.3173196","DOIUrl":null,"url":null,"abstract":"Evaluating the comprehensive performance of a warehouse-scale computer (WSC) has been a long-standing challenge. Traditional load-testing benchmarks become ineffective because they cannot accurately reproduce the behavior of thousands of distinct jobs co-located on a WSC. We therefore evaluate WSCs using actual job behaviors in live production environments. From our experience of developing multiple generations of WSCs, we identify two major challenges of this approach: 1) the lack of a holistic metric that incorporates thousands of jobs and summarizes the performance, and 2) the high costs and risks of conducting an evaluation in a live environment. To address these challenges, we propose WSMeter, a cost-effective methodology to accurately evaluate a WSC's performance using a live production environment. We first define a new metric which accurately represents a WSC's overall performance, taking a wide variety of unevenly distributed jobs into account. We then propose a model to statistically embrace the performance variance inherent in WSCs, to conduct an evaluation with minimal costs and risks. We present three real-world use cases to prove the effectiveness of WSMeter. In the first two cases, WSMeter accurately discerns 7% and 1% performance improvements from WSC upgrades using only 0.9% and 6.6% of the machines in the WSCs, respectively. We emphasize that naive statistical comparisons incur much higher evaluation costs (> 4 times) and sometimes even fail to distinguish subtle differences. The third case shows that a cloud customer hosting two services on our WSC quantifies the performance benefits of software optimization (+9.3%) with minimal overheads (2.3% of the service capacity).","PeriodicalId":302876,"journal":{"name":"Proceedings of the Twenty-Third International Conference on Architectural Support for Programming Languages and Operating Systems","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"WSMeter: A Performance Evaluation Methodology for Google's Production Warehouse-Scale Computers\",\"authors\":\"Jaewon Lee, Changkyun Kim, Kun Lin, Liqun Cheng, R. Govindaraju, Jangwoo Kim\",\"doi\":\"10.1145/3173162.3173196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Evaluating the comprehensive performance of a warehouse-scale computer (WSC) has been a long-standing challenge. Traditional load-testing benchmarks become ineffective because they cannot accurately reproduce the behavior of thousands of distinct jobs co-located on a WSC. We therefore evaluate WSCs using actual job behaviors in live production environments. From our experience of developing multiple generations of WSCs, we identify two major challenges of this approach: 1) the lack of a holistic metric that incorporates thousands of jobs and summarizes the performance, and 2) the high costs and risks of conducting an evaluation in a live environment. To address these challenges, we propose WSMeter, a cost-effective methodology to accurately evaluate a WSC's performance using a live production environment. We first define a new metric which accurately represents a WSC's overall performance, taking a wide variety of unevenly distributed jobs into account. We then propose a model to statistically embrace the performance variance inherent in WSCs, to conduct an evaluation with minimal costs and risks. We present three real-world use cases to prove the effectiveness of WSMeter. In the first two cases, WSMeter accurately discerns 7% and 1% performance improvements from WSC upgrades using only 0.9% and 6.6% of the machines in the WSCs, respectively. We emphasize that naive statistical comparisons incur much higher evaluation costs (> 4 times) and sometimes even fail to distinguish subtle differences. The third case shows that a cloud customer hosting two services on our WSC quantifies the performance benefits of software optimization (+9.3%) with minimal overheads (2.3% of the service capacity).\",\"PeriodicalId\":302876,\"journal\":{\"name\":\"Proceedings of the Twenty-Third International Conference on Architectural Support for Programming Languages and Operating Systems\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Twenty-Third International Conference on Architectural Support for Programming Languages and Operating Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3173162.3173196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twenty-Third International Conference on Architectural Support for Programming Languages and Operating Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3173162.3173196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

评估仓库级计算机(WSC)的综合性能一直是一个长期存在的挑战。传统的负载测试基准变得无效,因为它们不能准确地重现共同位于WSC上的数千个不同作业的行为。因此,我们使用现场生产环境中的实际工作行为来评估WSCs。根据我们开发多代wsc的经验,我们确定了这种方法的两个主要挑战:1)缺乏包含数千个工作并总结性能的整体度量,2)在实时环境中进行评估的高成本和风险。为了应对这些挑战,我们提出了WSMeter,这是一种经济有效的方法,可以使用实时生产环境准确评估WSC的性能。我们首先定义了一个新的指标,它准确地代表了WSC的整体性能,考虑了各种不均匀分布的作业。然后,我们提出了一个模型来统计包含WSCs固有的性能差异,以最小的成本和风险进行评估。我们给出了三个真实的用例来证明WSMeter的有效性。在前两种情况下,WSMeter分别使用WSC中0.9%和6.6%的机器,准确地识别出WSC升级带来的7%和1%的性能改进。我们强调,单纯的统计比较会产生更高的评估成本(> 4倍),有时甚至无法区分细微的差异。第三个案例表明,在我们的WSC上托管两个服务的云客户以最小的开销(服务容量的2.3%)量化了软件优化的性能优势(+9.3%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
WSMeter: A Performance Evaluation Methodology for Google's Production Warehouse-Scale Computers
Evaluating the comprehensive performance of a warehouse-scale computer (WSC) has been a long-standing challenge. Traditional load-testing benchmarks become ineffective because they cannot accurately reproduce the behavior of thousands of distinct jobs co-located on a WSC. We therefore evaluate WSCs using actual job behaviors in live production environments. From our experience of developing multiple generations of WSCs, we identify two major challenges of this approach: 1) the lack of a holistic metric that incorporates thousands of jobs and summarizes the performance, and 2) the high costs and risks of conducting an evaluation in a live environment. To address these challenges, we propose WSMeter, a cost-effective methodology to accurately evaluate a WSC's performance using a live production environment. We first define a new metric which accurately represents a WSC's overall performance, taking a wide variety of unevenly distributed jobs into account. We then propose a model to statistically embrace the performance variance inherent in WSCs, to conduct an evaluation with minimal costs and risks. We present three real-world use cases to prove the effectiveness of WSMeter. In the first two cases, WSMeter accurately discerns 7% and 1% performance improvements from WSC upgrades using only 0.9% and 6.6% of the machines in the WSCs, respectively. We emphasize that naive statistical comparisons incur much higher evaluation costs (> 4 times) and sometimes even fail to distinguish subtle differences. The third case shows that a cloud customer hosting two services on our WSC quantifies the performance benefits of software optimization (+9.3%) with minimal overheads (2.3% of the service capacity).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CALOREE: Learning Control for Predictable Latency and Low Energy Session details: Session 7B: Memory 2 Session details: Session 4A: Memory 1 BranchScope: A New Side-Channel Attack on Directional Branch Predictor Devirtualizing Memory in Heterogeneous Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1