基于模糊神经网络的模式识别

V. Guštin, J. Virant
{"title":"基于模糊神经网络的模式识别","authors":"V. Guštin,&nbsp;J. Virant","doi":"10.1016/0165-6074(94)90073-6","DOIUrl":null,"url":null,"abstract":"<div><p>This paper explains the character code recognition with the Boolean classifier. The binary values are used both for inputs and outputs, while the learning of the circuit with a set of patterns is done by modified algorithms used in some Boolean neural networks. The use of the fuzzy logic approach offers the possibility of creating a character recognition theory which is fault-tolerant and applicable to all sorts of typefaces and fonts. It provides several examples of patterns scanned with different resolutions and learned with a part of the same set of samples which demonstrates the quality of the fuzzy Boolea classifier.</p></div>","PeriodicalId":100927,"journal":{"name":"Microprocessing and Microprogramming","volume":"40 10","pages":"Pages 935-938"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0165-6074(94)90073-6","citationCount":"5","resultStr":"{\"title\":\"Pattern recognition with fuzzy neural network\",\"authors\":\"V. Guštin,&nbsp;J. Virant\",\"doi\":\"10.1016/0165-6074(94)90073-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper explains the character code recognition with the Boolean classifier. The binary values are used both for inputs and outputs, while the learning of the circuit with a set of patterns is done by modified algorithms used in some Boolean neural networks. The use of the fuzzy logic approach offers the possibility of creating a character recognition theory which is fault-tolerant and applicable to all sorts of typefaces and fonts. It provides several examples of patterns scanned with different resolutions and learned with a part of the same set of samples which demonstrates the quality of the fuzzy Boolea classifier.</p></div>\",\"PeriodicalId\":100927,\"journal\":{\"name\":\"Microprocessing and Microprogramming\",\"volume\":\"40 10\",\"pages\":\"Pages 935-938\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0165-6074(94)90073-6\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microprocessing and Microprogramming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0165607494900736\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microprocessing and Microprogramming","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0165607494900736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文阐述了布尔分类器在字符码识别中的应用。二进制值用于输入和输出,而具有一组模式的电路的学习是由一些布尔神经网络中使用的改进算法完成的。模糊逻辑方法的使用为创建一种容错的、适用于各种字体和字体的字符识别理论提供了可能性。它提供了几个以不同分辨率扫描的模式示例,并使用同一组样本的一部分进行学习,这证明了模糊Boolea分类器的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pattern recognition with fuzzy neural network

This paper explains the character code recognition with the Boolean classifier. The binary values are used both for inputs and outputs, while the learning of the circuit with a set of patterns is done by modified algorithms used in some Boolean neural networks. The use of the fuzzy logic approach offers the possibility of creating a character recognition theory which is fault-tolerant and applicable to all sorts of typefaces and fonts. It provides several examples of patterns scanned with different resolutions and learned with a part of the same set of samples which demonstrates the quality of the fuzzy Boolea classifier.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mixing floating- and fixed-point formats for neural network learning on neuroprocessors Subject index to volume 41 (1995/1996) A graphical simulator for programmable logic controllers based on Petri nets A neural network-based replacement strategy for high performance computer architectures Modelling and performance assessment of large ATM switching networks on loosely-coupled parallel processors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1