使用高维等表面的体积跟踪

Guangfeng Ji, Han-Wei Shen, R. Wenger
{"title":"使用高维等表面的体积跟踪","authors":"Guangfeng Ji, Han-Wei Shen, R. Wenger","doi":"10.1109/VISUAL.2003.1250374","DOIUrl":null,"url":null,"abstract":"Tracking and visualizing local features from a time-varying volumetric data allows the user to focus on selected regions of interest, both in space and time, which can lead to a better understanding of the underlying dynamics. In this paper, we present an efficient algorithm to track time-varying isosurfaces and interval volumes using isosurfacing in higher dimensions. Instead of extracting the data features such as isosurfaces or interval volumes separately from multiple time steps and computing the spatial correspondence between those features, our algorithm extracts the correspondence directly from the higher dimensional geometry and thus can more efficiently follow the user selected local features in time. In addition, by analyzing the resulting higher dimensional geometry, it becomes easier to detect important topological events and the corresponding critical time steps for the selected features. With our algorithm, the user can interact with the underlying time-varying data more easily. The computation cost for performing time-varying volume tracking is also minimized.","PeriodicalId":372131,"journal":{"name":"IEEE Visualization, 2003. VIS 2003.","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"75","resultStr":"{\"title\":\"Volume tracking using higher dimensional isosurfacing\",\"authors\":\"Guangfeng Ji, Han-Wei Shen, R. Wenger\",\"doi\":\"10.1109/VISUAL.2003.1250374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tracking and visualizing local features from a time-varying volumetric data allows the user to focus on selected regions of interest, both in space and time, which can lead to a better understanding of the underlying dynamics. In this paper, we present an efficient algorithm to track time-varying isosurfaces and interval volumes using isosurfacing in higher dimensions. Instead of extracting the data features such as isosurfaces or interval volumes separately from multiple time steps and computing the spatial correspondence between those features, our algorithm extracts the correspondence directly from the higher dimensional geometry and thus can more efficiently follow the user selected local features in time. In addition, by analyzing the resulting higher dimensional geometry, it becomes easier to detect important topological events and the corresponding critical time steps for the selected features. With our algorithm, the user can interact with the underlying time-varying data more easily. The computation cost for performing time-varying volume tracking is also minimized.\",\"PeriodicalId\":372131,\"journal\":{\"name\":\"IEEE Visualization, 2003. VIS 2003.\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"75\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Visualization, 2003. VIS 2003.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VISUAL.2003.1250374\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Visualization, 2003. VIS 2003.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VISUAL.2003.1250374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 75

摘要

从随时间变化的体积数据中跟踪和可视化局部特征,使用户可以在空间和时间上专注于感兴趣的选定区域,这可以更好地理解潜在的动态。本文提出了一种利用高维等值面跟踪时变等值面和区间体积的有效算法。该算法不是在多个时间步长中分别提取等值面或区间体等数据特征并计算这些特征之间的空间对应关系,而是直接从高维几何中提取对应关系,从而可以更有效地跟踪用户选择的局部特征。此外,通过分析得到的高维几何图形,可以更容易地检测出重要的拓扑事件和所选特征的相应关键时间步长。使用我们的算法,用户可以更容易地与底层时变数据进行交互。执行时变体积跟踪的计算成本也被最小化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Volume tracking using higher dimensional isosurfacing
Tracking and visualizing local features from a time-varying volumetric data allows the user to focus on selected regions of interest, both in space and time, which can lead to a better understanding of the underlying dynamics. In this paper, we present an efficient algorithm to track time-varying isosurfaces and interval volumes using isosurfacing in higher dimensions. Instead of extracting the data features such as isosurfaces or interval volumes separately from multiple time steps and computing the spatial correspondence between those features, our algorithm extracts the correspondence directly from the higher dimensional geometry and thus can more efficiently follow the user selected local features in time. In addition, by analyzing the resulting higher dimensional geometry, it becomes easier to detect important topological events and the corresponding critical time steps for the selected features. With our algorithm, the user can interact with the underlying time-varying data more easily. The computation cost for performing time-varying volume tracking is also minimized.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Voxels on fire [computer animation] Chameleon: an interactive texture-based rendering framework for visualizing three-dimensional vector fields Fast volume segmentation with simultaneous visualization using programmable graphics hardware Adaptive design of a global opacity transfer function for direct volume rendering of ultrasound data Visualization experiences and issues in deep space exploration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1