Nicolas Wenk, Joaquin Penalver-Andres, Rara Palma, Karin A. Buetler, R. Müri, T. Nef, L. Marchal-Crespo
{"title":"到达几个现实:不同的可视化技术的运动和认知的好处","authors":"Nicolas Wenk, Joaquin Penalver-Andres, Rara Palma, Karin A. Buetler, R. Müri, T. Nef, L. Marchal-Crespo","doi":"10.1109/ICORR.2019.8779366","DOIUrl":null,"url":null,"abstract":"There is increasing interest in using virtual reality (VR) in robotic neurorehabilitation. However, the use of conventional VR displays (i.e., computer screens), implies several transformations between the real movements in 3D and their 2D virtual representations that might negatively impact the rehabilitation interventions. In this study, we compared the impact on movement quality and cognitive load of novel vs. standard visualization technologies: i) Immersive VR (IVR) head-mounted display (HMD), ii) Augmented reality (AR) HMD, and iii) Computer screen. Twenty healthy participants performed simultaneously a motor and a cognitive task. Goal-oriented reaching movements were recorded using an HTC Vive controller. The cognitive load was assessed by the accuracy on a simultaneous counting task.The movement quality improved when visualizing the movements in IVR, compared to the computer screen. These improvements were more evident for locations that required movements in several dimensions. We found a trend to higher movement quality in AR than Screen, but worse than IVR. No significant difference was observed between modalities for the cognitive load. These results provide encouraging evidence that VR interventions using HMDs might be more suited for reaching tasks in several dimensions than a computer screen. Technical limitations might still limit the beneficial effects of AR, both in movement quality and cognitive load.","PeriodicalId":130415,"journal":{"name":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Reaching in Several Realities: Motor and Cognitive Benefits of Different Visualization Technologies\",\"authors\":\"Nicolas Wenk, Joaquin Penalver-Andres, Rara Palma, Karin A. Buetler, R. Müri, T. Nef, L. Marchal-Crespo\",\"doi\":\"10.1109/ICORR.2019.8779366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is increasing interest in using virtual reality (VR) in robotic neurorehabilitation. However, the use of conventional VR displays (i.e., computer screens), implies several transformations between the real movements in 3D and their 2D virtual representations that might negatively impact the rehabilitation interventions. In this study, we compared the impact on movement quality and cognitive load of novel vs. standard visualization technologies: i) Immersive VR (IVR) head-mounted display (HMD), ii) Augmented reality (AR) HMD, and iii) Computer screen. Twenty healthy participants performed simultaneously a motor and a cognitive task. Goal-oriented reaching movements were recorded using an HTC Vive controller. The cognitive load was assessed by the accuracy on a simultaneous counting task.The movement quality improved when visualizing the movements in IVR, compared to the computer screen. These improvements were more evident for locations that required movements in several dimensions. We found a trend to higher movement quality in AR than Screen, but worse than IVR. No significant difference was observed between modalities for the cognitive load. These results provide encouraging evidence that VR interventions using HMDs might be more suited for reaching tasks in several dimensions than a computer screen. Technical limitations might still limit the beneficial effects of AR, both in movement quality and cognitive load.\",\"PeriodicalId\":130415,\"journal\":{\"name\":\"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICORR.2019.8779366\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICORR.2019.8779366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reaching in Several Realities: Motor and Cognitive Benefits of Different Visualization Technologies
There is increasing interest in using virtual reality (VR) in robotic neurorehabilitation. However, the use of conventional VR displays (i.e., computer screens), implies several transformations between the real movements in 3D and their 2D virtual representations that might negatively impact the rehabilitation interventions. In this study, we compared the impact on movement quality and cognitive load of novel vs. standard visualization technologies: i) Immersive VR (IVR) head-mounted display (HMD), ii) Augmented reality (AR) HMD, and iii) Computer screen. Twenty healthy participants performed simultaneously a motor and a cognitive task. Goal-oriented reaching movements were recorded using an HTC Vive controller. The cognitive load was assessed by the accuracy on a simultaneous counting task.The movement quality improved when visualizing the movements in IVR, compared to the computer screen. These improvements were more evident for locations that required movements in several dimensions. We found a trend to higher movement quality in AR than Screen, but worse than IVR. No significant difference was observed between modalities for the cognitive load. These results provide encouraging evidence that VR interventions using HMDs might be more suited for reaching tasks in several dimensions than a computer screen. Technical limitations might still limit the beneficial effects of AR, both in movement quality and cognitive load.