{"title":"用于光学和微波光子之间量子转导的低损耗高阻抗电路","authors":"Yuta Tsuchimoto, M. Kroner","doi":"10.1088/2633-4356/ac5ac4","DOIUrl":null,"url":null,"abstract":"\n Quantum transducers between microwave and optical photons are essential for long-distance quantum networks based on superconducting qubits. An optically active self-assembled quantum dot molecule (QDM) is an attractive platform for the implementation of a quantum transducer because an exciton in a QDM can be efficiently coupled to both optical and microwave fields at the single-photon level. Recently, the transduction between microwave and optical photons has been demonstrated with a QDM integrated with a superconducting resonator. In this paper, we present a design of a QD-high impedance resonator device with a low microwave loss and an expected large single-microwave photon coupling strength of 100s of MHz. We integrate self-assembled QDs onto a high-impedance superconducting resonator using a transfer printing technique and demonstrate a low-microwave loss rate of 1.8 MHz and gate tunability of the QDs. The corresponding microwave photon decay time of 88 ns is longer than the time necessary for the optical-microwave transduction process as well as the transmon-resonator swap operation time. This feature will facilitate efficient quantum transduction between an optical and microwave qubit.","PeriodicalId":345750,"journal":{"name":"Materials for Quantum Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Low-loss high-impedance circuit for quantum transduction between optical and microwave photons\",\"authors\":\"Yuta Tsuchimoto, M. Kroner\",\"doi\":\"10.1088/2633-4356/ac5ac4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Quantum transducers between microwave and optical photons are essential for long-distance quantum networks based on superconducting qubits. An optically active self-assembled quantum dot molecule (QDM) is an attractive platform for the implementation of a quantum transducer because an exciton in a QDM can be efficiently coupled to both optical and microwave fields at the single-photon level. Recently, the transduction between microwave and optical photons has been demonstrated with a QDM integrated with a superconducting resonator. In this paper, we present a design of a QD-high impedance resonator device with a low microwave loss and an expected large single-microwave photon coupling strength of 100s of MHz. We integrate self-assembled QDs onto a high-impedance superconducting resonator using a transfer printing technique and demonstrate a low-microwave loss rate of 1.8 MHz and gate tunability of the QDs. The corresponding microwave photon decay time of 88 ns is longer than the time necessary for the optical-microwave transduction process as well as the transmon-resonator swap operation time. This feature will facilitate efficient quantum transduction between an optical and microwave qubit.\",\"PeriodicalId\":345750,\"journal\":{\"name\":\"Materials for Quantum Technology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials for Quantum Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2633-4356/ac5ac4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Quantum Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2633-4356/ac5ac4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low-loss high-impedance circuit for quantum transduction between optical and microwave photons
Quantum transducers between microwave and optical photons are essential for long-distance quantum networks based on superconducting qubits. An optically active self-assembled quantum dot molecule (QDM) is an attractive platform for the implementation of a quantum transducer because an exciton in a QDM can be efficiently coupled to both optical and microwave fields at the single-photon level. Recently, the transduction between microwave and optical photons has been demonstrated with a QDM integrated with a superconducting resonator. In this paper, we present a design of a QD-high impedance resonator device with a low microwave loss and an expected large single-microwave photon coupling strength of 100s of MHz. We integrate self-assembled QDs onto a high-impedance superconducting resonator using a transfer printing technique and demonstrate a low-microwave loss rate of 1.8 MHz and gate tunability of the QDs. The corresponding microwave photon decay time of 88 ns is longer than the time necessary for the optical-microwave transduction process as well as the transmon-resonator swap operation time. This feature will facilitate efficient quantum transduction between an optical and microwave qubit.