基于截断总变分法的单雾图像去雾

Yin Gao, Yijing Su, Jun Li
{"title":"基于截断总变分法的单雾图像去雾","authors":"Yin Gao, Yijing Su, Jun Li","doi":"10.1145/3421766.3421772","DOIUrl":null,"url":null,"abstract":"Existing dehazing methods are usually to appear visual problems. In the paper, we put forward a truncated total variation method (TTV) to eliminate haze. A histogram analysis is firstly developed to obtain global atmospheric light. Then, using an adaptive boundary constraint TTV to optimize the transmission properly. Finally, a new DCP is presented to remove haze. Shown in experimental results, our method can outperform existent methods on the visual effect.","PeriodicalId":360184,"journal":{"name":"Proceedings of the 2nd International Conference on Artificial Intelligence and Advanced Manufacture","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single Fog Image Dehazing via Truncated Total Variation Method\",\"authors\":\"Yin Gao, Yijing Su, Jun Li\",\"doi\":\"10.1145/3421766.3421772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing dehazing methods are usually to appear visual problems. In the paper, we put forward a truncated total variation method (TTV) to eliminate haze. A histogram analysis is firstly developed to obtain global atmospheric light. Then, using an adaptive boundary constraint TTV to optimize the transmission properly. Finally, a new DCP is presented to remove haze. Shown in experimental results, our method can outperform existent methods on the visual effect.\",\"PeriodicalId\":360184,\"journal\":{\"name\":\"Proceedings of the 2nd International Conference on Artificial Intelligence and Advanced Manufacture\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd International Conference on Artificial Intelligence and Advanced Manufacture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3421766.3421772\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd International Conference on Artificial Intelligence and Advanced Manufacture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3421766.3421772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现有的除雾方法通常会出现视觉问题。本文提出了一种截断总变分法(TTV)来消除雾霾。首先提出了一种直方图分析方法来获取全球大气光。然后,利用自适应边界约束TTV对传输进行优化。最后,提出了一种新的DCP来去除雾霾。实验结果表明,我们的方法在视觉效果上优于现有的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Single Fog Image Dehazing via Truncated Total Variation Method
Existing dehazing methods are usually to appear visual problems. In the paper, we put forward a truncated total variation method (TTV) to eliminate haze. A histogram analysis is firstly developed to obtain global atmospheric light. Then, using an adaptive boundary constraint TTV to optimize the transmission properly. Finally, a new DCP is presented to remove haze. Shown in experimental results, our method can outperform existent methods on the visual effect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on Bank Marketing Behavior Based on Machine Learning Formal Description Approach for Agent-Based Mobile Computing The Research on Mobile Robot Path Routing Based on PID Algorithm CCTV News Broadcast Information Mining: Keyword Extraction Based on Semantic Model and Statistics Visualization Feature Point Matching Based on Four-point Order Consistency in the RGB-D SLAM System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1