利用SCAPS-1D研究吸收层上ZnSe (ETM)和Cu2O (HTM)对钙钛矿太阳能电池性能的影响

J. A. Owolabi, M. Onimisi, Jessica Amuchi Ukwenya, Alexander Bulus Bature, Ugbe Raphael Ushiekpan
{"title":"利用SCAPS-1D研究吸收层上ZnSe (ETM)和Cu2O (HTM)对钙钛矿太阳能电池性能的影响","authors":"J. A. Owolabi, M. Onimisi, Jessica Amuchi Ukwenya, Alexander Bulus Bature, Ugbe Raphael Ushiekpan","doi":"10.11648/J.AJPA.20200801.12","DOIUrl":null,"url":null,"abstract":"Tin perovskite (CH3NH3SnI3) have attracted a lot of attention and could be a viable alternative material to replace lead perovskite in thin film solar cells. A detailed understanding on the effects of each component of a solar cell on its output performance is needed to further develop the technology. In this work, a numerical simulation of a planar hetero-junction tin based perovskite solar cell using Solar Cell Capacitance Simulator (SCAPS) to study some parameters that can influence the performance of tin PSC with Cu2O as HTL and ZnSe as ETL performed. The thickness of absorber material, ETL and HTL, the bandgap of absorber material and ETL was investigated. Results revealed that the thickness and bandgap of the absorber material and ETL of ZnSe strongly influence the PCE of the device. The performance of the cell increases with reduction in thickness of ZnSe. ZnSe is found to be a replacement for TiO2 which is expensive. Cuprous oxide of HTL in tin based PSC is efficient and better than the expensive spiro-MeOTAD which is easily degradable. Furthermore, results of simulation and optimization of various thicknesses indicates that ZnSe has a PCE of 21.11%, FF of 68.33%, JSC of 33.51mA/cm2 and VOC of 0.92V. These values slightly increase after optimization of parameters to PCE of 22.28%, FF of 70.94%, JSC of 31.01mA/cm2 and VOC of 1.01V.","PeriodicalId":329149,"journal":{"name":"American Journal of Physics and Applications","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Investigating the Effect of ZnSe (ETM) and Cu2O (HTM) on Absorber Layer on the Performance of Pervoskite Solar Cell Using SCAPS-1D\",\"authors\":\"J. A. Owolabi, M. Onimisi, Jessica Amuchi Ukwenya, Alexander Bulus Bature, Ugbe Raphael Ushiekpan\",\"doi\":\"10.11648/J.AJPA.20200801.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tin perovskite (CH3NH3SnI3) have attracted a lot of attention and could be a viable alternative material to replace lead perovskite in thin film solar cells. A detailed understanding on the effects of each component of a solar cell on its output performance is needed to further develop the technology. In this work, a numerical simulation of a planar hetero-junction tin based perovskite solar cell using Solar Cell Capacitance Simulator (SCAPS) to study some parameters that can influence the performance of tin PSC with Cu2O as HTL and ZnSe as ETL performed. The thickness of absorber material, ETL and HTL, the bandgap of absorber material and ETL was investigated. Results revealed that the thickness and bandgap of the absorber material and ETL of ZnSe strongly influence the PCE of the device. The performance of the cell increases with reduction in thickness of ZnSe. ZnSe is found to be a replacement for TiO2 which is expensive. Cuprous oxide of HTL in tin based PSC is efficient and better than the expensive spiro-MeOTAD which is easily degradable. Furthermore, results of simulation and optimization of various thicknesses indicates that ZnSe has a PCE of 21.11%, FF of 68.33%, JSC of 33.51mA/cm2 and VOC of 0.92V. These values slightly increase after optimization of parameters to PCE of 22.28%, FF of 70.94%, JSC of 31.01mA/cm2 and VOC of 1.01V.\",\"PeriodicalId\":329149,\"journal\":{\"name\":\"American Journal of Physics and Applications\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Physics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.AJPA.20200801.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Physics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.AJPA.20200801.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

锡钙钛矿(CH3NH3SnI3)是一种可行的替代钙钛矿用于薄膜太阳能电池的材料。为了进一步发展这项技术,需要详细了解太阳能电池的每个组成部分对其输出性能的影响。本文利用太阳能电池电容模拟器(SCAPS)对平面异质结锡基钙钛矿太阳能电池进行了数值模拟,研究了以Cu2O为HTL、ZnSe为ETL的锡基PSC性能的影响参数。研究了吸收材料、ETL和HTL的厚度、吸收材料和ETL的带隙。结果表明,吸收材料的厚度、带隙和ZnSe的ETL对器件的PCE有较大影响。随着ZnSe厚度的减小,电池的性能也随之提高。发现ZnSe是昂贵的TiO2的替代品。锡基PSC中HTL的氧化亚铜比昂贵的易于降解的spiro-MeOTAD效率更高。此外,不同厚度下的模拟和优化结果表明,ZnSe的PCE为21.11%,FF为68.33%,JSC为33.51mA/cm2, VOC为0.92V。优化后的PCE为22.28%,FF为70.94%,JSC为31.01mA/cm2, VOC为1.01V,这些数值略有增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigating the Effect of ZnSe (ETM) and Cu2O (HTM) on Absorber Layer on the Performance of Pervoskite Solar Cell Using SCAPS-1D
Tin perovskite (CH3NH3SnI3) have attracted a lot of attention and could be a viable alternative material to replace lead perovskite in thin film solar cells. A detailed understanding on the effects of each component of a solar cell on its output performance is needed to further develop the technology. In this work, a numerical simulation of a planar hetero-junction tin based perovskite solar cell using Solar Cell Capacitance Simulator (SCAPS) to study some parameters that can influence the performance of tin PSC with Cu2O as HTL and ZnSe as ETL performed. The thickness of absorber material, ETL and HTL, the bandgap of absorber material and ETL was investigated. Results revealed that the thickness and bandgap of the absorber material and ETL of ZnSe strongly influence the PCE of the device. The performance of the cell increases with reduction in thickness of ZnSe. ZnSe is found to be a replacement for TiO2 which is expensive. Cuprous oxide of HTL in tin based PSC is efficient and better than the expensive spiro-MeOTAD which is easily degradable. Furthermore, results of simulation and optimization of various thicknesses indicates that ZnSe has a PCE of 21.11%, FF of 68.33%, JSC of 33.51mA/cm2 and VOC of 0.92V. These values slightly increase after optimization of parameters to PCE of 22.28%, FF of 70.94%, JSC of 31.01mA/cm2 and VOC of 1.01V.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of High Gain Single Stage Telescopic Cmos Operational Amplifier Evaluation of the Risk Associated with Drinkable Water Sources Through Analysis of Gross Alpha and Beta Radioactivity Levels in Chosen Locations, Mubi – North Heat Transfer Behavior of a PTC Receiver Tube Using Transversal Focal Inserts and CFD Electronic and Mechanical Properties of Chemical Bonds (A-O & B-O) in Cubic Phase A+2B+4O3 Perovskite Oxides An Energy Criterion for Rheological Failure of Rock and Application in Stability Analysis of Natural High Slope
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1