利用监督谱分析进行特征提取

Ruicong Zhi, Q. Ruan
{"title":"利用监督谱分析进行特征提取","authors":"Ruicong Zhi, Q. Ruan","doi":"10.1109/ICOSP.2008.4697426","DOIUrl":null,"url":null,"abstract":"This paper proposes a feature extraction algorithm, called supervised spectral analysis (SSA) which is motivated by spectral clustering. The algorithm is interesting from a number of perspectives: (a) utilize the class information of the data points to construct the affinity matrix, which can enhance the discriminant power of the features; (b) solve the small-sample-size problem which is often confronted in the practical application; (c) effectively discover the nonlinear structure hidden in the data. We analysis the properties of the SSA and apply it to facial expression recognition. Experiments on JAFFE and Cohn-Kanade databases show the effectiveness of the SSA algorithm.","PeriodicalId":445699,"journal":{"name":"2008 9th International Conference on Signal Processing","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Feature extraction using supervised spectral analysis\",\"authors\":\"Ruicong Zhi, Q. Ruan\",\"doi\":\"10.1109/ICOSP.2008.4697426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a feature extraction algorithm, called supervised spectral analysis (SSA) which is motivated by spectral clustering. The algorithm is interesting from a number of perspectives: (a) utilize the class information of the data points to construct the affinity matrix, which can enhance the discriminant power of the features; (b) solve the small-sample-size problem which is often confronted in the practical application; (c) effectively discover the nonlinear structure hidden in the data. We analysis the properties of the SSA and apply it to facial expression recognition. Experiments on JAFFE and Cohn-Kanade databases show the effectiveness of the SSA algorithm.\",\"PeriodicalId\":445699,\"journal\":{\"name\":\"2008 9th International Conference on Signal Processing\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 9th International Conference on Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOSP.2008.4697426\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 9th International Conference on Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSP.2008.4697426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于谱聚类的特征提取算法——监督谱分析(SSA)。该算法的有趣之处在于:(a)利用数据点的类信息构建亲和矩阵,增强特征的判别能力;(b)解决实际应用中经常遇到的小样本问题;(c)有效发现隐藏在数据中的非线性结构。分析了该算法的特性,并将其应用于面部表情识别。在JAFFE和Cohn-Kanade数据库上的实验表明了SSA算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Feature extraction using supervised spectral analysis
This paper proposes a feature extraction algorithm, called supervised spectral analysis (SSA) which is motivated by spectral clustering. The algorithm is interesting from a number of perspectives: (a) utilize the class information of the data points to construct the affinity matrix, which can enhance the discriminant power of the features; (b) solve the small-sample-size problem which is often confronted in the practical application; (c) effectively discover the nonlinear structure hidden in the data. We analysis the properties of the SSA and apply it to facial expression recognition. Experiments on JAFFE and Cohn-Kanade databases show the effectiveness of the SSA algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel pulse shaping method for Ultra-Wideband communications Matching pursuits with undercomplete dictionary A novel decision-directed channel estimator for OFDM systems Task analysis methods for data selection in task adaptation on mandarin isolated word recognition Combining LBP and Adaboost for facial expression recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1