基于自适应速度阈值粒子群算法(AVT-PSO)在FPGA上实现人工智能认知神经神经细胞

Divya Singh, Sunita Prasad, Sandeep Srivastava
{"title":"基于自适应速度阈值粒子群算法(AVT-PSO)在FPGA上实现人工智能认知神经神经细胞","authors":"Divya Singh, Sunita Prasad, Sandeep Srivastava","doi":"10.1109/ICRITO.2017.8342488","DOIUrl":null,"url":null,"abstract":"This paper presents the hardware development and implementation of artificial intelligence based neuron cell using swarm intelligence based algorithm (AVT-PSO) where the functionality of the architecture is tested by implementing four bit addition based on cognitive science neural network employing five neuron cell (sort of a model emulating function of a neuron cell in the brain) trained using an adaptive velocity threshold particle swarm optimization on Spartan-3e XC3S100E Field Programmable Gate Arrays (FPGA). Each neuron cell represents a processing element which is trained using swarm intelligence. Adaptive velocity threshold PSO algorithm is used in evolving threshold values to train the weights of neural cells. Implemented system is flexible in design, allowing the possibility to add or remove neurons to generate new network architectures.","PeriodicalId":357118,"journal":{"name":"2017 6th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO)","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Implementation of artificial intelligence cognitive neuroscience neuron cell using adaptive velocity threshold particle swarm optimization (AVT-PSO) on FPGA\",\"authors\":\"Divya Singh, Sunita Prasad, Sandeep Srivastava\",\"doi\":\"10.1109/ICRITO.2017.8342488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the hardware development and implementation of artificial intelligence based neuron cell using swarm intelligence based algorithm (AVT-PSO) where the functionality of the architecture is tested by implementing four bit addition based on cognitive science neural network employing five neuron cell (sort of a model emulating function of a neuron cell in the brain) trained using an adaptive velocity threshold particle swarm optimization on Spartan-3e XC3S100E Field Programmable Gate Arrays (FPGA). Each neuron cell represents a processing element which is trained using swarm intelligence. Adaptive velocity threshold PSO algorithm is used in evolving threshold values to train the weights of neural cells. Implemented system is flexible in design, allowing the possibility to add or remove neurons to generate new network architectures.\",\"PeriodicalId\":357118,\"journal\":{\"name\":\"2017 6th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO)\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 6th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRITO.2017.8342488\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 6th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRITO.2017.8342488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文介绍了使用基于群智能算法(AVT-PSO)的基于人工智能的神经元细胞的硬件开发和实现,其中通过在spartan3e XC3S100E Field Programmable上使用自适应速度阈值粒子群优化训练的五个神经元细胞(一种模拟大脑神经元细胞功能的模型)实现基于认知科学神经网络的四位加法来测试该架构的功能门阵列(FPGA)。每个神经元细胞代表一个处理单元,该处理单元使用群体智能进行训练。采用自适应速度阈值粒子群算法对阈值进行演化,训练神经细胞的权值。实现的系统设计灵活,允许添加或删除神经元以生成新的网络架构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Implementation of artificial intelligence cognitive neuroscience neuron cell using adaptive velocity threshold particle swarm optimization (AVT-PSO) on FPGA
This paper presents the hardware development and implementation of artificial intelligence based neuron cell using swarm intelligence based algorithm (AVT-PSO) where the functionality of the architecture is tested by implementing four bit addition based on cognitive science neural network employing five neuron cell (sort of a model emulating function of a neuron cell in the brain) trained using an adaptive velocity threshold particle swarm optimization on Spartan-3e XC3S100E Field Programmable Gate Arrays (FPGA). Each neuron cell represents a processing element which is trained using swarm intelligence. Adaptive velocity threshold PSO algorithm is used in evolving threshold values to train the weights of neural cells. Implemented system is flexible in design, allowing the possibility to add or remove neurons to generate new network architectures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fractal antenna for wireless applications Analysis of various techniques of feature extraction on skin lesion images Modeling and simulation of CEERI's water distribution network to detect leakage using HLR approach Design and analysis of symmetrical notch S shape patch antenna for wideband applications Experiences in the business process modelling at public organizations of La Pampa
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1