G. Pascual, Cathy Lee, J. P. Pineda, Byong Kim, Keibock Lee
{"title":"多层陶瓷电容器的压电力显微镜表征","authors":"G. Pascual, Cathy Lee, J. P. Pineda, Byong Kim, Keibock Lee","doi":"10.1109/IPFA.2018.8452613","DOIUrl":null,"url":null,"abstract":"The coupling between an electrical and mechanical response in a material is a fundamental property that provides functionality to a variety of applications ranging from sensors and actuators to energy harvesting and biology. Most materials exhibit electromechanical coupling in nanometer-sized domains. Therefore, to understand the relationship between structure and function of these materials, characterization on the nanoscale is required. This property can be directly measured in a non-destructive manner using piezoelectric force microscopy (PFM), a mode that comes standard in all atomic force microscopes (AFMs) from Park Systems. Additionally, PFM can be used as a spectroscopic tool to evaluate switching of piezoelectric domains. Here we demonstrate the utility of PFM for failure analysis of a multilayered ceramic capacitor. Correlative imaging of topography and electrical signals revealed discontinuous structures in the device that likely had a direct effect on device performance. Spectroscopy was also performed at a specific piezoelectric region to measure domain properties, such as the electric field required to flip the polarization direction (coercive voltage).","PeriodicalId":382811,"journal":{"name":"2018 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of Multilayered Ceramic Capacitors via Piezoelectric Force Microscopy\",\"authors\":\"G. Pascual, Cathy Lee, J. P. Pineda, Byong Kim, Keibock Lee\",\"doi\":\"10.1109/IPFA.2018.8452613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The coupling between an electrical and mechanical response in a material is a fundamental property that provides functionality to a variety of applications ranging from sensors and actuators to energy harvesting and biology. Most materials exhibit electromechanical coupling in nanometer-sized domains. Therefore, to understand the relationship between structure and function of these materials, characterization on the nanoscale is required. This property can be directly measured in a non-destructive manner using piezoelectric force microscopy (PFM), a mode that comes standard in all atomic force microscopes (AFMs) from Park Systems. Additionally, PFM can be used as a spectroscopic tool to evaluate switching of piezoelectric domains. Here we demonstrate the utility of PFM for failure analysis of a multilayered ceramic capacitor. Correlative imaging of topography and electrical signals revealed discontinuous structures in the device that likely had a direct effect on device performance. Spectroscopy was also performed at a specific piezoelectric region to measure domain properties, such as the electric field required to flip the polarization direction (coercive voltage).\",\"PeriodicalId\":382811,\"journal\":{\"name\":\"2018 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPFA.2018.8452613\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPFA.2018.8452613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Characterization of Multilayered Ceramic Capacitors via Piezoelectric Force Microscopy
The coupling between an electrical and mechanical response in a material is a fundamental property that provides functionality to a variety of applications ranging from sensors and actuators to energy harvesting and biology. Most materials exhibit electromechanical coupling in nanometer-sized domains. Therefore, to understand the relationship between structure and function of these materials, characterization on the nanoscale is required. This property can be directly measured in a non-destructive manner using piezoelectric force microscopy (PFM), a mode that comes standard in all atomic force microscopes (AFMs) from Park Systems. Additionally, PFM can be used as a spectroscopic tool to evaluate switching of piezoelectric domains. Here we demonstrate the utility of PFM for failure analysis of a multilayered ceramic capacitor. Correlative imaging of topography and electrical signals revealed discontinuous structures in the device that likely had a direct effect on device performance. Spectroscopy was also performed at a specific piezoelectric region to measure domain properties, such as the electric field required to flip the polarization direction (coercive voltage).