FOI FinFET具有超低寄生电阻,在隔离体翅片上形成全金属源极和漏极

Qingzhu Zhang, H. Yin, Jun Luo, Hong Yang, Lingkuan Meng, Yudong Li, Zhenhua Wu, Yanbo Zhang, Yongkui Zhang, Changliang Qin, Junjie Li, Jianfeng Gao, Guilei Wang, W. Xiong, J. Xiang, Zhangyu Zhou, S. Mao, Gaobo Xu, Jinbiao Liu, Y. Qu, Tao Yang, Junfeng Li, Qiuxia Xu, Jiang Yan, Huilong Zhu, Chao Zhao, Tianchun Ye
{"title":"FOI FinFET具有超低寄生电阻,在隔离体翅片上形成全金属源极和漏极","authors":"Qingzhu Zhang, H. Yin, Jun Luo, Hong Yang, Lingkuan Meng, Yudong Li, Zhenhua Wu, Yanbo Zhang, Yongkui Zhang, Changliang Qin, Junjie Li, Jianfeng Gao, Guilei Wang, W. Xiong, J. Xiang, Zhangyu Zhou, S. Mao, Gaobo Xu, Jinbiao Liu, Y. Qu, Tao Yang, Junfeng Li, Qiuxia Xu, Jiang Yan, Huilong Zhu, Chao Zhao, Tianchun Ye","doi":"10.1109/IEDM.2016.7838438","DOIUrl":null,"url":null,"abstract":"The large parasitic resistance has become a critical limiting factor to on current (ION) of FinFET and nanowire devices. Fully metallic source and drain (MSD) process is one of the most promising solutions but it often suffers from intolerant junction leakage in bulk FETs. In this paper, fully MSD process on fin-on-insulator (FOI) FinFET is investigated extensively for the first time. By forming fully Ni(Pt) silicide on physically isolated fins, about 90% reduction in contacted resistivities (Rcs) and 55% reduction in sheet resistances (Rss) are achieved without obvious junction leakage degradation. As a consequence, Ion of transistor, with gate length (Lg) of 20nm, is increased 30 times, up to 547μA/μm for NMOS and 324 μA/μm for PMOS, respectively. Excellent controls of SCE and channel leakage with 47% DIBL, 32% SS and 2.5% device leakages reductions over the counterpart of conventional bulk FinFETs are also obtained. Meanwhile, the fully MSD process induces clear tensile stress into narrow fin-channel, resulting in enhanced electron mobility in NMOS. A further improvement in PMOS drive ability (486μA/μm) by using Schottky barrier source and drain (SBSD) technology is also explored.","PeriodicalId":186544,"journal":{"name":"2016 IEEE International Electron Devices Meeting (IEDM)","volume":"164 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"FOI FinFET with ultra-low parasitic resistance enabled by fully metallic source and drain formation on isolated bulk-fin\",\"authors\":\"Qingzhu Zhang, H. Yin, Jun Luo, Hong Yang, Lingkuan Meng, Yudong Li, Zhenhua Wu, Yanbo Zhang, Yongkui Zhang, Changliang Qin, Junjie Li, Jianfeng Gao, Guilei Wang, W. Xiong, J. Xiang, Zhangyu Zhou, S. Mao, Gaobo Xu, Jinbiao Liu, Y. Qu, Tao Yang, Junfeng Li, Qiuxia Xu, Jiang Yan, Huilong Zhu, Chao Zhao, Tianchun Ye\",\"doi\":\"10.1109/IEDM.2016.7838438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The large parasitic resistance has become a critical limiting factor to on current (ION) of FinFET and nanowire devices. Fully metallic source and drain (MSD) process is one of the most promising solutions but it often suffers from intolerant junction leakage in bulk FETs. In this paper, fully MSD process on fin-on-insulator (FOI) FinFET is investigated extensively for the first time. By forming fully Ni(Pt) silicide on physically isolated fins, about 90% reduction in contacted resistivities (Rcs) and 55% reduction in sheet resistances (Rss) are achieved without obvious junction leakage degradation. As a consequence, Ion of transistor, with gate length (Lg) of 20nm, is increased 30 times, up to 547μA/μm for NMOS and 324 μA/μm for PMOS, respectively. Excellent controls of SCE and channel leakage with 47% DIBL, 32% SS and 2.5% device leakages reductions over the counterpart of conventional bulk FinFETs are also obtained. Meanwhile, the fully MSD process induces clear tensile stress into narrow fin-channel, resulting in enhanced electron mobility in NMOS. A further improvement in PMOS drive ability (486μA/μm) by using Schottky barrier source and drain (SBSD) technology is also explored.\",\"PeriodicalId\":186544,\"journal\":{\"name\":\"2016 IEEE International Electron Devices Meeting (IEDM)\",\"volume\":\"164 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Electron Devices Meeting (IEDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEDM.2016.7838438\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2016.7838438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

较大的寄生电阻已成为限制FinFET和纳米线器件导通电流(ION)的关键因素。全金属源极漏极(MSD)工艺是最有前途的解决方案之一,但在块状场效应管中存在结漏不容忍的问题。本文首次对翅片上绝缘子(FOI) FinFET的全MSD工艺进行了广泛的研究。通过在物理隔离的翅片上形成完全的Ni(Pt)硅化物,在没有明显的结漏退化的情况下,接触电阻(Rcs)降低了约90%,片电阻(Rss)降低了55%。因此,栅极长度(Lg)为20nm的晶体管的离子提高了30倍,NMOS和PMOS分别达到547μA/μm和324 μA/μm。与传统的块状finfet相比,SCE和通道泄漏的控制也很好,DIBL减少47%,SS减少32%,器件泄漏减少2.5%。同时,全MSD工艺在狭窄的鳍状通道中产生了明显的拉伸应力,从而提高了NMOS中的电子迁移率。利用肖特基势垒源漏(SBSD)技术进一步提高PMOS驱动性能(486μA/μm)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FOI FinFET with ultra-low parasitic resistance enabled by fully metallic source and drain formation on isolated bulk-fin
The large parasitic resistance has become a critical limiting factor to on current (ION) of FinFET and nanowire devices. Fully metallic source and drain (MSD) process is one of the most promising solutions but it often suffers from intolerant junction leakage in bulk FETs. In this paper, fully MSD process on fin-on-insulator (FOI) FinFET is investigated extensively for the first time. By forming fully Ni(Pt) silicide on physically isolated fins, about 90% reduction in contacted resistivities (Rcs) and 55% reduction in sheet resistances (Rss) are achieved without obvious junction leakage degradation. As a consequence, Ion of transistor, with gate length (Lg) of 20nm, is increased 30 times, up to 547μA/μm for NMOS and 324 μA/μm for PMOS, respectively. Excellent controls of SCE and channel leakage with 47% DIBL, 32% SS and 2.5% device leakages reductions over the counterpart of conventional bulk FinFETs are also obtained. Meanwhile, the fully MSD process induces clear tensile stress into narrow fin-channel, resulting in enhanced electron mobility in NMOS. A further improvement in PMOS drive ability (486μA/μm) by using Schottky barrier source and drain (SBSD) technology is also explored.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SOI technology for quantum information processing Sustainable electronics for nano-spacecraft in deep space missions Current status and challenges of the modeling of organic photodiodes and solar cells Triboelectric energy harvester with an ultra-thin tribo-dielectric layer by initiated CVD and investigation of underlying physics in the triboelectricity 256×256, 100kfps, 61% Fill-factor time-resolved SPAD image sensor for microscopy applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1