Qingzhu Zhang, H. Yin, Jun Luo, Hong Yang, Lingkuan Meng, Yudong Li, Zhenhua Wu, Yanbo Zhang, Yongkui Zhang, Changliang Qin, Junjie Li, Jianfeng Gao, Guilei Wang, W. Xiong, J. Xiang, Zhangyu Zhou, S. Mao, Gaobo Xu, Jinbiao Liu, Y. Qu, Tao Yang, Junfeng Li, Qiuxia Xu, Jiang Yan, Huilong Zhu, Chao Zhao, Tianchun Ye
{"title":"FOI FinFET具有超低寄生电阻,在隔离体翅片上形成全金属源极和漏极","authors":"Qingzhu Zhang, H. Yin, Jun Luo, Hong Yang, Lingkuan Meng, Yudong Li, Zhenhua Wu, Yanbo Zhang, Yongkui Zhang, Changliang Qin, Junjie Li, Jianfeng Gao, Guilei Wang, W. Xiong, J. Xiang, Zhangyu Zhou, S. Mao, Gaobo Xu, Jinbiao Liu, Y. Qu, Tao Yang, Junfeng Li, Qiuxia Xu, Jiang Yan, Huilong Zhu, Chao Zhao, Tianchun Ye","doi":"10.1109/IEDM.2016.7838438","DOIUrl":null,"url":null,"abstract":"The large parasitic resistance has become a critical limiting factor to on current (ION) of FinFET and nanowire devices. Fully metallic source and drain (MSD) process is one of the most promising solutions but it often suffers from intolerant junction leakage in bulk FETs. In this paper, fully MSD process on fin-on-insulator (FOI) FinFET is investigated extensively for the first time. By forming fully Ni(Pt) silicide on physically isolated fins, about 90% reduction in contacted resistivities (Rcs) and 55% reduction in sheet resistances (Rss) are achieved without obvious junction leakage degradation. As a consequence, Ion of transistor, with gate length (Lg) of 20nm, is increased 30 times, up to 547μA/μm for NMOS and 324 μA/μm for PMOS, respectively. Excellent controls of SCE and channel leakage with 47% DIBL, 32% SS and 2.5% device leakages reductions over the counterpart of conventional bulk FinFETs are also obtained. Meanwhile, the fully MSD process induces clear tensile stress into narrow fin-channel, resulting in enhanced electron mobility in NMOS. A further improvement in PMOS drive ability (486μA/μm) by using Schottky barrier source and drain (SBSD) technology is also explored.","PeriodicalId":186544,"journal":{"name":"2016 IEEE International Electron Devices Meeting (IEDM)","volume":"164 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"FOI FinFET with ultra-low parasitic resistance enabled by fully metallic source and drain formation on isolated bulk-fin\",\"authors\":\"Qingzhu Zhang, H. Yin, Jun Luo, Hong Yang, Lingkuan Meng, Yudong Li, Zhenhua Wu, Yanbo Zhang, Yongkui Zhang, Changliang Qin, Junjie Li, Jianfeng Gao, Guilei Wang, W. Xiong, J. Xiang, Zhangyu Zhou, S. Mao, Gaobo Xu, Jinbiao Liu, Y. Qu, Tao Yang, Junfeng Li, Qiuxia Xu, Jiang Yan, Huilong Zhu, Chao Zhao, Tianchun Ye\",\"doi\":\"10.1109/IEDM.2016.7838438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The large parasitic resistance has become a critical limiting factor to on current (ION) of FinFET and nanowire devices. Fully metallic source and drain (MSD) process is one of the most promising solutions but it often suffers from intolerant junction leakage in bulk FETs. In this paper, fully MSD process on fin-on-insulator (FOI) FinFET is investigated extensively for the first time. By forming fully Ni(Pt) silicide on physically isolated fins, about 90% reduction in contacted resistivities (Rcs) and 55% reduction in sheet resistances (Rss) are achieved without obvious junction leakage degradation. As a consequence, Ion of transistor, with gate length (Lg) of 20nm, is increased 30 times, up to 547μA/μm for NMOS and 324 μA/μm for PMOS, respectively. Excellent controls of SCE and channel leakage with 47% DIBL, 32% SS and 2.5% device leakages reductions over the counterpart of conventional bulk FinFETs are also obtained. Meanwhile, the fully MSD process induces clear tensile stress into narrow fin-channel, resulting in enhanced electron mobility in NMOS. A further improvement in PMOS drive ability (486μA/μm) by using Schottky barrier source and drain (SBSD) technology is also explored.\",\"PeriodicalId\":186544,\"journal\":{\"name\":\"2016 IEEE International Electron Devices Meeting (IEDM)\",\"volume\":\"164 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Electron Devices Meeting (IEDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEDM.2016.7838438\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2016.7838438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
FOI FinFET with ultra-low parasitic resistance enabled by fully metallic source and drain formation on isolated bulk-fin
The large parasitic resistance has become a critical limiting factor to on current (ION) of FinFET and nanowire devices. Fully metallic source and drain (MSD) process is one of the most promising solutions but it often suffers from intolerant junction leakage in bulk FETs. In this paper, fully MSD process on fin-on-insulator (FOI) FinFET is investigated extensively for the first time. By forming fully Ni(Pt) silicide on physically isolated fins, about 90% reduction in contacted resistivities (Rcs) and 55% reduction in sheet resistances (Rss) are achieved without obvious junction leakage degradation. As a consequence, Ion of transistor, with gate length (Lg) of 20nm, is increased 30 times, up to 547μA/μm for NMOS and 324 μA/μm for PMOS, respectively. Excellent controls of SCE and channel leakage with 47% DIBL, 32% SS and 2.5% device leakages reductions over the counterpart of conventional bulk FinFETs are also obtained. Meanwhile, the fully MSD process induces clear tensile stress into narrow fin-channel, resulting in enhanced electron mobility in NMOS. A further improvement in PMOS drive ability (486μA/μm) by using Schottky barrier source and drain (SBSD) technology is also explored.