非均匀车辆排的集中与分散自适应控制:等时间间隔策略

H. Chehardoli, M. Homaeinezhad
{"title":"非均匀车辆排的集中与分散自适应控制:等时间间隔策略","authors":"H. Chehardoli, M. Homaeinezhad","doi":"10.1109/ICCIAUTOM.2017.8258650","DOIUrl":null,"url":null,"abstract":"This paper deals with the adaptive control and identification of 1-D platoon of non-identical vehicles. Three common different topologies such as predecessor following (PF), bi-directional leader following (BDLF) and two predecessors following (TPF) are considered as the communication structures of platoon. For each topology, a new neighbor-based adaptive control law is introduced to estimate the parameter uncertainties. Constant time gap strategy (CTGS) is used to adjust the intervehicle spacing. For each topology, it is shown that the closed-loop dynamics of platoon is asymptotically stable. Afterwards, the necessary conditions on control parameters assuring the string stability for each topology are derived by presenting further theorems. Simulation results with different scenarios are provided to show the effectiveness of the presented approaches.","PeriodicalId":197207,"journal":{"name":"2017 5th International Conference on Control, Instrumentation, and Automation (ICCIA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Centralized and decentralized adaptive control of non-uniform platoon of vehicles: Constant time gap strategy\",\"authors\":\"H. Chehardoli, M. Homaeinezhad\",\"doi\":\"10.1109/ICCIAUTOM.2017.8258650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the adaptive control and identification of 1-D platoon of non-identical vehicles. Three common different topologies such as predecessor following (PF), bi-directional leader following (BDLF) and two predecessors following (TPF) are considered as the communication structures of platoon. For each topology, a new neighbor-based adaptive control law is introduced to estimate the parameter uncertainties. Constant time gap strategy (CTGS) is used to adjust the intervehicle spacing. For each topology, it is shown that the closed-loop dynamics of platoon is asymptotically stable. Afterwards, the necessary conditions on control parameters assuring the string stability for each topology are derived by presenting further theorems. Simulation results with different scenarios are provided to show the effectiveness of the presented approaches.\",\"PeriodicalId\":197207,\"journal\":{\"name\":\"2017 5th International Conference on Control, Instrumentation, and Automation (ICCIA)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 5th International Conference on Control, Instrumentation, and Automation (ICCIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIAUTOM.2017.8258650\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 5th International Conference on Control, Instrumentation, and Automation (ICCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIAUTOM.2017.8258650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了非同构车辆一维队列的自适应控制与识别问题。将前导跟随(PF)、双向前导跟随(BDLF)和两个前导跟随(TPF)三种常见的不同拓扑结构作为排的通信结构。针对每种拓扑结构,引入了一种新的基于邻域的自适应控制律来估计参数的不确定性。采用恒时间间隔策略(CTGS)对车辆间距进行调整。对于每种拓扑结构,都证明了排的闭环动力学是渐近稳定的。然后,通过进一步的定理推导出保证每种拓扑结构的弦稳定性的控制参数的必要条件。不同场景下的仿真结果表明了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Centralized and decentralized adaptive control of non-uniform platoon of vehicles: Constant time gap strategy
This paper deals with the adaptive control and identification of 1-D platoon of non-identical vehicles. Three common different topologies such as predecessor following (PF), bi-directional leader following (BDLF) and two predecessors following (TPF) are considered as the communication structures of platoon. For each topology, a new neighbor-based adaptive control law is introduced to estimate the parameter uncertainties. Constant time gap strategy (CTGS) is used to adjust the intervehicle spacing. For each topology, it is shown that the closed-loop dynamics of platoon is asymptotically stable. Afterwards, the necessary conditions on control parameters assuring the string stability for each topology are derived by presenting further theorems. Simulation results with different scenarios are provided to show the effectiveness of the presented approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Discrete linear quadratic control of uncertain switched system Fractional order adaptive fuzzy terminal sliding mode controller design for a knee joint orthosis with nonlinear disturbance observer Kalman filter based sensor fault detection and identification in an electro-pump system Comparison of iterative and recursive algorithms for identifying a solar power plant system State estimation of VTOL octorotor for altitude control by using hybrid extended Kalman filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1