一种基于模拟退火算法的改进BP神经算法

Kai Bai, Jing Xiong
{"title":"一种基于模拟退火算法的改进BP神经算法","authors":"Kai Bai, Jing Xiong","doi":"10.1109/WGEC.2009.39","DOIUrl":null,"url":null,"abstract":"This paper analyses the BP algorithm in detail, including the number of hidden layer, the amount of neural node and training algorithm. In order to improve the training speed, this paper adopts the automatic and adaptive step to perfect the BP algorithm. In addition, because the traditional BP neural network is easy to trap into local minimum, this paper makes use of the characteristic of simulated annealing algorithm and let it unite with BP algorithm. Because the simulated annealing algorithm can get optimal approximation by searching local, it can help BP algorithm not to trap into local minimum.","PeriodicalId":277950,"journal":{"name":"2009 Third International Conference on Genetic and Evolutionary Computing","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Method of Improved BP Neural Algorithm Based on Simulated Annealing Algorithm\",\"authors\":\"Kai Bai, Jing Xiong\",\"doi\":\"10.1109/WGEC.2009.39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper analyses the BP algorithm in detail, including the number of hidden layer, the amount of neural node and training algorithm. In order to improve the training speed, this paper adopts the automatic and adaptive step to perfect the BP algorithm. In addition, because the traditional BP neural network is easy to trap into local minimum, this paper makes use of the characteristic of simulated annealing algorithm and let it unite with BP algorithm. Because the simulated annealing algorithm can get optimal approximation by searching local, it can help BP algorithm not to trap into local minimum.\",\"PeriodicalId\":277950,\"journal\":{\"name\":\"2009 Third International Conference on Genetic and Evolutionary Computing\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Third International Conference on Genetic and Evolutionary Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WGEC.2009.39\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Third International Conference on Genetic and Evolutionary Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WGEC.2009.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文对BP算法进行了详细的分析,包括隐层数、神经节点数和训练算法。为了提高训练速度,本文采用自动自适应步进对BP算法进行了改进。另外,由于传统的BP神经网络容易陷入局部极小,本文利用模拟退火算法的特点,使其与BP算法相结合。由于模拟退火算法可以通过局部搜索得到最优逼近,可以帮助BP算法避免陷入局部最小值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Method of Improved BP Neural Algorithm Based on Simulated Annealing Algorithm
This paper analyses the BP algorithm in detail, including the number of hidden layer, the amount of neural node and training algorithm. In order to improve the training speed, this paper adopts the automatic and adaptive step to perfect the BP algorithm. In addition, because the traditional BP neural network is easy to trap into local minimum, this paper makes use of the characteristic of simulated annealing algorithm and let it unite with BP algorithm. Because the simulated annealing algorithm can get optimal approximation by searching local, it can help BP algorithm not to trap into local minimum.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Method of Robust Stabilization for the Delay Neural Networks with Nonlinear Perturbations A New Association Rules Mining Algorithm Based on Vector Research on Multidisciplinary Design Optimization Based Response Surface Technology of Artificial Neural Network Chaotic Analysis of Seismic Time Series and Short-Term Prediction with RBF Neural Networks An Optimization Approach of Ant Colony Algorithm and Adaptive Genetic Algorithm for MCM Interconnect Test
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1