从检测中解耦识别:单镜头自依赖场景文本观测者

Jingjing Wu, Pengyuan Lyu, Guangming Lu, Chengquan Zhang, Kun Yao, Wenjie Pei
{"title":"从检测中解耦识别:单镜头自依赖场景文本观测者","authors":"Jingjing Wu, Pengyuan Lyu, Guangming Lu, Chengquan Zhang, Kun Yao, Wenjie Pei","doi":"10.1145/3503161.3548266","DOIUrl":null,"url":null,"abstract":"Typical text spotters follow the two-stage spotting strategy: detect the precise boundary for a text instance first and then perform text recognition within the located text region. While such strategy has achieved substantial progress, there are two underlying limitations. 1) The performance of text recognition depends heavily on the precision of text detection, resulting in the potential error propagation from detection to recognition. 2) The RoI cropping which bridges the detection and recognition brings noise from background and leads to information loss when pooling or interpolating from feature maps. In this work we propose the single shot Self-Reliant Scene Text Spotter (SRSTS), which circumvents these limitations by decoupling recognition from detection. Specifically, we conduct text detection and recognition in parallel and bridge them by the shared positive anchor point. Consequently, our method is able to recognize the text instances correctly even though the precise text boundaries are challenging to detect. Additionally, our method reduces the annotation cost for text detection substantially. Extensive experiments on regular-shaped benchmark and arbitrary-shaped benchmark demonstrate that our SRSTS compares favorably to previous state-of-the-art spotters in terms of both accuracy and efficiency.","PeriodicalId":412792,"journal":{"name":"Proceedings of the 30th ACM International Conference on Multimedia","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Decoupling Recognition from Detection: Single Shot Self-Reliant Scene Text Spotter\",\"authors\":\"Jingjing Wu, Pengyuan Lyu, Guangming Lu, Chengquan Zhang, Kun Yao, Wenjie Pei\",\"doi\":\"10.1145/3503161.3548266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Typical text spotters follow the two-stage spotting strategy: detect the precise boundary for a text instance first and then perform text recognition within the located text region. While such strategy has achieved substantial progress, there are two underlying limitations. 1) The performance of text recognition depends heavily on the precision of text detection, resulting in the potential error propagation from detection to recognition. 2) The RoI cropping which bridges the detection and recognition brings noise from background and leads to information loss when pooling or interpolating from feature maps. In this work we propose the single shot Self-Reliant Scene Text Spotter (SRSTS), which circumvents these limitations by decoupling recognition from detection. Specifically, we conduct text detection and recognition in parallel and bridge them by the shared positive anchor point. Consequently, our method is able to recognize the text instances correctly even though the precise text boundaries are challenging to detect. Additionally, our method reduces the annotation cost for text detection substantially. Extensive experiments on regular-shaped benchmark and arbitrary-shaped benchmark demonstrate that our SRSTS compares favorably to previous state-of-the-art spotters in terms of both accuracy and efficiency.\",\"PeriodicalId\":412792,\"journal\":{\"name\":\"Proceedings of the 30th ACM International Conference on Multimedia\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 30th ACM International Conference on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3503161.3548266\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM International Conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3503161.3548266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

典型的文本定位器遵循两阶段定位策略:首先检测文本实例的精确边界,然后在定位的文本区域内执行文本识别。虽然这一战略取得了重大进展,但仍有两个潜在的限制。1)文本识别的性能很大程度上依赖于文本检测的精度,从而导致从检测到识别的潜在误差传播。2)桥接检测和识别的RoI裁剪会带来背景噪声,导致特征图池化或插值时的信息丢失。在这项工作中,我们提出了单镜头自力更生的场景文本观测者(SRSTS),它通过将识别与检测分离来规避这些限制。具体来说,我们并行地进行文本检测和识别,并通过共享的正锚点将它们连接起来。因此,我们的方法能够正确地识别文本实例,即使精确的文本边界很难检测。此外,我们的方法大大降低了文本检测的标注成本。在规则形基准和任意形基准上的大量实验表明,我们的SRSTS在精度和效率方面都优于以前最先进的观测者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Decoupling Recognition from Detection: Single Shot Self-Reliant Scene Text Spotter
Typical text spotters follow the two-stage spotting strategy: detect the precise boundary for a text instance first and then perform text recognition within the located text region. While such strategy has achieved substantial progress, there are two underlying limitations. 1) The performance of text recognition depends heavily on the precision of text detection, resulting in the potential error propagation from detection to recognition. 2) The RoI cropping which bridges the detection and recognition brings noise from background and leads to information loss when pooling or interpolating from feature maps. In this work we propose the single shot Self-Reliant Scene Text Spotter (SRSTS), which circumvents these limitations by decoupling recognition from detection. Specifically, we conduct text detection and recognition in parallel and bridge them by the shared positive anchor point. Consequently, our method is able to recognize the text instances correctly even though the precise text boundaries are challenging to detect. Additionally, our method reduces the annotation cost for text detection substantially. Extensive experiments on regular-shaped benchmark and arbitrary-shaped benchmark demonstrate that our SRSTS compares favorably to previous state-of-the-art spotters in terms of both accuracy and efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Anti-Bottleneck Multi-Modal Graph Learning Network for Personalized Micro-video Recommendation Composite Photograph Harmonization with Complete Background Cues Domain-Specific Conditional Jigsaw Adaptation for Enhancing transferability and Discriminability Enabling Effective Low-Light Perception using Ubiquitous Low-Cost Visible-Light Cameras Restoration of Analog Videos Using Swin-UNet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1