{"title":"选定的空中导航服务提供商将无人机集成到空中交通管制系统的方法","authors":"Peter Matúš, Matúš Materna","doi":"10.26552/pas.z.2021.2.26","DOIUrl":null,"url":null,"abstract":"In this article are approaches of Air Navigation Services (ANS) providers in chosen countries to UAV integration into Air Traffic Control Systems identified and described. Firstly we made a synpaper of theoretical information about ANS and UAV. Product of ANS providers has 11 parts. For UAV traffic control and management are important ATC, CNS, AIS, MET, ATFCM and ASM services. The volume of ANS provided depends on UAV operation development in the country, and on the level of integration of UAV into ATC systems. The biggest problem of UAV operation is the risk of collision with piloted aircraft, and potential threat of people and property on the ground. The biggest risk is during UAV operation close to airports, because there are many aircrafts flying in low altitudes (after take-off and on approach to landing). The consequences of collision in this altitudes in the most serious. Because of this, 4 ways to detect and 2 ways to mitigate an unauthorized UAV close to airport are currently in use. Various combinations of UAV detection and mitigation ways create complex airport UAV protection systems. Secondly, we chose 7 countries (Poland, Hungary, Germany, Great Britain, USA, India, and United Arab Emirates), and analysed their approaches to UAV integration. In all of the analysed countries can remote pilots use a mobile application, which allows them to create a flight plan, and receive all the information, necessary for the flight. Differences between these countries are for example if the permission in required for every UAV flight (in Hungary and India yes), if the ANS provider has an opportunity to watch UAV during flight (in Poland, India, and partly in Germany), if the UAV operation without direct visual contact between remote pilot and UAV is allowed (in Poland and Germany), and if are UAV operations included into airspace capacity management systems (in Poland, Hungary, Germany, and Great Britain). UAV integration process in next years will relate to development of communication systems between UAVs, between UAV and ATC, and between UAV and piloted aircraft. The process will also relate to development of technologies to avoid mid-air collisions.","PeriodicalId":142690,"journal":{"name":"Práce a štúdie - Vydanie 10","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approaches of chosen air navigation services providers to UAV integration into air traffic control systems\",\"authors\":\"Peter Matúš, Matúš Materna\",\"doi\":\"10.26552/pas.z.2021.2.26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article are approaches of Air Navigation Services (ANS) providers in chosen countries to UAV integration into Air Traffic Control Systems identified and described. Firstly we made a synpaper of theoretical information about ANS and UAV. Product of ANS providers has 11 parts. For UAV traffic control and management are important ATC, CNS, AIS, MET, ATFCM and ASM services. The volume of ANS provided depends on UAV operation development in the country, and on the level of integration of UAV into ATC systems. The biggest problem of UAV operation is the risk of collision with piloted aircraft, and potential threat of people and property on the ground. The biggest risk is during UAV operation close to airports, because there are many aircrafts flying in low altitudes (after take-off and on approach to landing). The consequences of collision in this altitudes in the most serious. Because of this, 4 ways to detect and 2 ways to mitigate an unauthorized UAV close to airport are currently in use. Various combinations of UAV detection and mitigation ways create complex airport UAV protection systems. Secondly, we chose 7 countries (Poland, Hungary, Germany, Great Britain, USA, India, and United Arab Emirates), and analysed their approaches to UAV integration. In all of the analysed countries can remote pilots use a mobile application, which allows them to create a flight plan, and receive all the information, necessary for the flight. Differences between these countries are for example if the permission in required for every UAV flight (in Hungary and India yes), if the ANS provider has an opportunity to watch UAV during flight (in Poland, India, and partly in Germany), if the UAV operation without direct visual contact between remote pilot and UAV is allowed (in Poland and Germany), and if are UAV operations included into airspace capacity management systems (in Poland, Hungary, Germany, and Great Britain). UAV integration process in next years will relate to development of communication systems between UAVs, between UAV and ATC, and between UAV and piloted aircraft. The process will also relate to development of technologies to avoid mid-air collisions.\",\"PeriodicalId\":142690,\"journal\":{\"name\":\"Práce a štúdie - Vydanie 10\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Práce a štúdie - Vydanie 10\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26552/pas.z.2021.2.26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Práce a štúdie - Vydanie 10","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26552/pas.z.2021.2.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Approaches of chosen air navigation services providers to UAV integration into air traffic control systems
In this article are approaches of Air Navigation Services (ANS) providers in chosen countries to UAV integration into Air Traffic Control Systems identified and described. Firstly we made a synpaper of theoretical information about ANS and UAV. Product of ANS providers has 11 parts. For UAV traffic control and management are important ATC, CNS, AIS, MET, ATFCM and ASM services. The volume of ANS provided depends on UAV operation development in the country, and on the level of integration of UAV into ATC systems. The biggest problem of UAV operation is the risk of collision with piloted aircraft, and potential threat of people and property on the ground. The biggest risk is during UAV operation close to airports, because there are many aircrafts flying in low altitudes (after take-off and on approach to landing). The consequences of collision in this altitudes in the most serious. Because of this, 4 ways to detect and 2 ways to mitigate an unauthorized UAV close to airport are currently in use. Various combinations of UAV detection and mitigation ways create complex airport UAV protection systems. Secondly, we chose 7 countries (Poland, Hungary, Germany, Great Britain, USA, India, and United Arab Emirates), and analysed their approaches to UAV integration. In all of the analysed countries can remote pilots use a mobile application, which allows them to create a flight plan, and receive all the information, necessary for the flight. Differences between these countries are for example if the permission in required for every UAV flight (in Hungary and India yes), if the ANS provider has an opportunity to watch UAV during flight (in Poland, India, and partly in Germany), if the UAV operation without direct visual contact between remote pilot and UAV is allowed (in Poland and Germany), and if are UAV operations included into airspace capacity management systems (in Poland, Hungary, Germany, and Great Britain). UAV integration process in next years will relate to development of communication systems between UAVs, between UAV and ATC, and between UAV and piloted aircraft. The process will also relate to development of technologies to avoid mid-air collisions.