XIn2S4 (X = Zn, Cd, Hg)结构、电子和光学性质的第一性原理研究

J. Alzahrani, S. Al-Qaisi, Q. Mahmood, T. Ghrib
{"title":"XIn2S4 (X = Zn, Cd, Hg)结构、电子和光学性质的第一性原理研究","authors":"J. Alzahrani, S. Al-Qaisi, Q. Mahmood, T. Ghrib","doi":"10.52131/jmps.2021.0202.0017","DOIUrl":null,"url":null,"abstract":"The spinel oxides are one of the prime candidates for their use in thermoelectric and optoelectronic applications. This particular article mainly deals with the thermodynamic and mechanical stabilities of spinel sulfides confirmed by formation energy and Born-mechanical stability criteria. The ductile behavior is achieved through Poisson’s and Pugh's ratios. The indirect band gaps of 1.9 eV, 1.7 eV and direct band gap of 1.3 eV for ZnIn2S4, CdIn2S4 and HgIn2S4 spinel sulfides, respectively, are estimated by employing modified Becke-Johnson (mBJ) potential in the Wien2k computational program. The calculated optical characteristics such as dielectric coefficient, refractive index, absorption, reflection, energy loss coefficient and other related parametric quantities are explored to observe optoelectronic applications from UV to visible energy range as we move from Zn to Hg. Moreover, the ratios of thermal conductivity to electrical conductivity, Seebeck coefficient along with the figure of merits (ZT) are discussed to acknowledge the thermoelectric behavior of all three materials. The high values of ZT 0.84/0.74/0.79 are observed for Zn/Cd/HgIn2S4 spinel sulfides which ensure their prospective use in thermal energy conversion devices, especially in thermoelectric generators.","PeriodicalId":293021,"journal":{"name":"Journal of Materials and Physical Sciences","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"First Principle Study of Structural, Electronic, and Optical Properties of XIn2S4 (X = Zn, Cd, Hg)\",\"authors\":\"J. Alzahrani, S. Al-Qaisi, Q. Mahmood, T. Ghrib\",\"doi\":\"10.52131/jmps.2021.0202.0017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The spinel oxides are one of the prime candidates for their use in thermoelectric and optoelectronic applications. This particular article mainly deals with the thermodynamic and mechanical stabilities of spinel sulfides confirmed by formation energy and Born-mechanical stability criteria. The ductile behavior is achieved through Poisson’s and Pugh's ratios. The indirect band gaps of 1.9 eV, 1.7 eV and direct band gap of 1.3 eV for ZnIn2S4, CdIn2S4 and HgIn2S4 spinel sulfides, respectively, are estimated by employing modified Becke-Johnson (mBJ) potential in the Wien2k computational program. The calculated optical characteristics such as dielectric coefficient, refractive index, absorption, reflection, energy loss coefficient and other related parametric quantities are explored to observe optoelectronic applications from UV to visible energy range as we move from Zn to Hg. Moreover, the ratios of thermal conductivity to electrical conductivity, Seebeck coefficient along with the figure of merits (ZT) are discussed to acknowledge the thermoelectric behavior of all three materials. The high values of ZT 0.84/0.74/0.79 are observed for Zn/Cd/HgIn2S4 spinel sulfides which ensure their prospective use in thermal energy conversion devices, especially in thermoelectric generators.\",\"PeriodicalId\":293021,\"journal\":{\"name\":\"Journal of Materials and Physical Sciences\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials and Physical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52131/jmps.2021.0202.0017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials and Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52131/jmps.2021.0202.0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

尖晶石氧化物是热电和光电子应用的主要候选材料之一。本文主要讨论了尖晶石硫化物的热力学稳定性和力学稳定性。延性是通过泊松比和皮尤比得到的。采用改进的Becke-Johnson (mBJ)势,在Wien2k计算程序中估计ZnIn2S4、CdIn2S4和HgIn2S4尖晶石硫化物的间接带隙分别为1.9 eV、1.7 eV和1.3 eV。通过计算出的介电系数、折射率、吸收、反射、能量损耗系数等光学特性和其他相关参数量,研究了从锌到汞从紫外到可见光的光电子应用。此外,还讨论了导热系数与电导率的比值、塞贝克系数和优点系数(ZT),以了解这三种材料的热电行为。Zn/Cd/HgIn2S4尖晶石硫化物具有较高的ZT 0.84/0.74/0.79值,保证了其在热能转换器件特别是热电发电机中的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
First Principle Study of Structural, Electronic, and Optical Properties of XIn2S4 (X = Zn, Cd, Hg)
The spinel oxides are one of the prime candidates for their use in thermoelectric and optoelectronic applications. This particular article mainly deals with the thermodynamic and mechanical stabilities of spinel sulfides confirmed by formation energy and Born-mechanical stability criteria. The ductile behavior is achieved through Poisson’s and Pugh's ratios. The indirect band gaps of 1.9 eV, 1.7 eV and direct band gap of 1.3 eV for ZnIn2S4, CdIn2S4 and HgIn2S4 spinel sulfides, respectively, are estimated by employing modified Becke-Johnson (mBJ) potential in the Wien2k computational program. The calculated optical characteristics such as dielectric coefficient, refractive index, absorption, reflection, energy loss coefficient and other related parametric quantities are explored to observe optoelectronic applications from UV to visible energy range as we move from Zn to Hg. Moreover, the ratios of thermal conductivity to electrical conductivity, Seebeck coefficient along with the figure of merits (ZT) are discussed to acknowledge the thermoelectric behavior of all three materials. The high values of ZT 0.84/0.74/0.79 are observed for Zn/Cd/HgIn2S4 spinel sulfides which ensure their prospective use in thermal energy conversion devices, especially in thermoelectric generators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pani-Based Nanocomposites for Electrical Applications: A Review Investigating Nickel Ferrite (NiFe2O4) Nanoparticles for Magnetic Hyperthermia Applications Exploring Study of Magnetic and Electrical Properties of Tl3+ Doped Co0.5Ni0.5Fe2O4 Spinel Ferrites Impact of Holmium and Nickel Substitution on Y-Type Hexagonal Ferrites Synthesized via Sol-gel Method Exploring the Potential of Zinc Ferrite Nanocomposite as an Anode Material in Lithium-Ion Batteries: Integration with Fish Scale-Derived Carbon Support for Enhanced Performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1