满足启发式搜索的偏差探索

Ryo Kuroiwa, J. Christopher Beck
{"title":"满足启发式搜索的偏差探索","authors":"Ryo Kuroiwa, J. Christopher Beck","doi":"10.1609/icaps.v32i1.19804","DOIUrl":null,"url":null,"abstract":"Satisficing heuristic search such as greedy best-first search (GBFS) suffers from local minima, regions where heuristic values are inaccurate and a good node has a worse heuristic value than other nodes. Search algorithms that incorporate exploration mechanisms in GBFS empirically reduce the search effort to solve difficult problems. Although some of these methods entirely ignore the guidance of a heuristic during their exploration phase, intuitively, a good heuristic should have some bound on its inaccuracy, and exploration mechanisms should exploit this bound. In this paper, we theoretically analyze what a good node is for satisficing heuristic search algorithms and show that the heuristic value of a good node has an upper bound if a heuristic satisfies a certain property. Then, we propose biased exploration mechanisms which select lower heuristic values with higher probabilities. In the experiments using synthetic graph search problems and classical planning benchmarks, we show that the biased exploration mechanisms can be useful. In particular, one of our methods, Softmin-Type(h), significantly outperforms other GBFS variants in classical planning and improves the performance of Type-LAMA, a state-of-the-art classical planner.","PeriodicalId":239898,"journal":{"name":"International Conference on Automated Planning and Scheduling","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Biased Exploration for Satisficing Heuristic Search\",\"authors\":\"Ryo Kuroiwa, J. Christopher Beck\",\"doi\":\"10.1609/icaps.v32i1.19804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Satisficing heuristic search such as greedy best-first search (GBFS) suffers from local minima, regions where heuristic values are inaccurate and a good node has a worse heuristic value than other nodes. Search algorithms that incorporate exploration mechanisms in GBFS empirically reduce the search effort to solve difficult problems. Although some of these methods entirely ignore the guidance of a heuristic during their exploration phase, intuitively, a good heuristic should have some bound on its inaccuracy, and exploration mechanisms should exploit this bound. In this paper, we theoretically analyze what a good node is for satisficing heuristic search algorithms and show that the heuristic value of a good node has an upper bound if a heuristic satisfies a certain property. Then, we propose biased exploration mechanisms which select lower heuristic values with higher probabilities. In the experiments using synthetic graph search problems and classical planning benchmarks, we show that the biased exploration mechanisms can be useful. In particular, one of our methods, Softmin-Type(h), significantly outperforms other GBFS variants in classical planning and improves the performance of Type-LAMA, a state-of-the-art classical planner.\",\"PeriodicalId\":239898,\"journal\":{\"name\":\"International Conference on Automated Planning and Scheduling\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Automated Planning and Scheduling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/icaps.v32i1.19804\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Automated Planning and Scheduling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/icaps.v32i1.19804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

满足启发式搜索(如贪婪最优优先搜索(GBFS))存在局部最小值、启发式值不准确的区域以及良好节点的启发式值比其他节点差的问题。在GBFS中结合探索机制的搜索算法从经验上减少了解决难题的搜索工作量。虽然其中一些方法在探索阶段完全忽略了启发式的指导,但从直觉上讲,一个好的启发式应该对其不准确性有一定的限制,而探索机制应该利用这个限制。本文从理论上分析了满足启发式搜索算法的好节点是什么,并证明了当一个启发式算法满足一定的性质时,一个好节点的启发式值有上界。然后,我们提出了有偏差的探索机制,该机制选择具有较高概率的较低启发式值。在使用合成图搜索问题和经典规划基准的实验中,我们证明了有偏差的探索机制是有用的。特别是,我们的方法之一,Softmin-Type(h),在经典规划中显著优于其他GBFS变体,并提高了最先进的经典规划器Type-LAMA的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biased Exploration for Satisficing Heuristic Search
Satisficing heuristic search such as greedy best-first search (GBFS) suffers from local minima, regions where heuristic values are inaccurate and a good node has a worse heuristic value than other nodes. Search algorithms that incorporate exploration mechanisms in GBFS empirically reduce the search effort to solve difficult problems. Although some of these methods entirely ignore the guidance of a heuristic during their exploration phase, intuitively, a good heuristic should have some bound on its inaccuracy, and exploration mechanisms should exploit this bound. In this paper, we theoretically analyze what a good node is for satisficing heuristic search algorithms and show that the heuristic value of a good node has an upper bound if a heuristic satisfies a certain property. Then, we propose biased exploration mechanisms which select lower heuristic values with higher probabilities. In the experiments using synthetic graph search problems and classical planning benchmarks, we show that the biased exploration mechanisms can be useful. In particular, one of our methods, Softmin-Type(h), significantly outperforms other GBFS variants in classical planning and improves the performance of Type-LAMA, a state-of-the-art classical planner.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast and Robust Resource-Constrained Scheduling with Graph Neural Networks Solving the Multi-Choice Two Dimensional Shelf Strip Packing Problem with Time Windows Generalizing Action Justification and Causal Links to Policies Exact Anytime Multi-Agent Path Finding Using Branch-and-Cut-and-Price and Large Neighborhood Search A Constraint Programming Solution to the Guillotine Rectangular Cutting Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1