{"title":"从移动3d AR应用程序的单个RGB图像预测向前和向后面部深度图","authors":"P. Avinash, Mansi Sharma","doi":"10.1109/IC3D48390.2019.8975899","DOIUrl":null,"url":null,"abstract":"Cheap and fast 3D asset creation to enable AR/VR applications is a fast growing domain. This paper addresses a significant problem of reconstructing complete 3D information of a face in near real-time speed on a mobile phone. We propose a novel deep learning based solution to predict robust depth maps of a face, one forward facing and the other backward facing, from a single image from the wild. A critical contribution is that the proposed network is capable of learning the depths of the occluded part of the face too. This is achieved by training a fully convolutional neural network to learn the dual (forward and backward) depth maps, with a common encoder and two separate decoders. The 300W-LP, a cloud point dataset, is used to compute the required dual depth maps from the training data. The code and results will be made available at project page.","PeriodicalId":344706,"journal":{"name":"2019 International Conference on 3D Immersion (IC3D)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Predicting Forward & Backward Facial Depth Maps From a Single RGB Image For Mobile 3d AR Application\",\"authors\":\"P. Avinash, Mansi Sharma\",\"doi\":\"10.1109/IC3D48390.2019.8975899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cheap and fast 3D asset creation to enable AR/VR applications is a fast growing domain. This paper addresses a significant problem of reconstructing complete 3D information of a face in near real-time speed on a mobile phone. We propose a novel deep learning based solution to predict robust depth maps of a face, one forward facing and the other backward facing, from a single image from the wild. A critical contribution is that the proposed network is capable of learning the depths of the occluded part of the face too. This is achieved by training a fully convolutional neural network to learn the dual (forward and backward) depth maps, with a common encoder and two separate decoders. The 300W-LP, a cloud point dataset, is used to compute the required dual depth maps from the training data. The code and results will be made available at project page.\",\"PeriodicalId\":344706,\"journal\":{\"name\":\"2019 International Conference on 3D Immersion (IC3D)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on 3D Immersion (IC3D)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC3D48390.2019.8975899\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on 3D Immersion (IC3D)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3D48390.2019.8975899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Predicting Forward & Backward Facial Depth Maps From a Single RGB Image For Mobile 3d AR Application
Cheap and fast 3D asset creation to enable AR/VR applications is a fast growing domain. This paper addresses a significant problem of reconstructing complete 3D information of a face in near real-time speed on a mobile phone. We propose a novel deep learning based solution to predict robust depth maps of a face, one forward facing and the other backward facing, from a single image from the wild. A critical contribution is that the proposed network is capable of learning the depths of the occluded part of the face too. This is achieved by training a fully convolutional neural network to learn the dual (forward and backward) depth maps, with a common encoder and two separate decoders. The 300W-LP, a cloud point dataset, is used to compute the required dual depth maps from the training data. The code and results will be made available at project page.