含水量和粒度分布对热带非洲(布基纳法索和塞内加尔)砂质红土特征弹性杨氏模量(Ec)的各向异性Boyce模型影响

Bibalo Ida Josiane Ki, Makhaly Bâ, Rokhaya Gueye, P. Hornych, Ahmad Sana
{"title":"含水量和粒度分布对热带非洲(布基纳法索和塞内加尔)砂质红土特征弹性杨氏模量(Ec)的各向异性Boyce模型影响","authors":"Bibalo Ida Josiane Ki, Makhaly Bâ, Rokhaya Gueye, P. Hornych, Ahmad Sana","doi":"10.4236/OJCE.2021.111009","DOIUrl":null,"url":null,"abstract":"This research was carried out to determine the rheological parameters of lateritic soils in order to contribute to the improvement of the technical documents used for pavement design in tropical Africa. The study is based on the loading repeated of cyclic triaxial tests (LRT) performed at University Gustave Eiffel (formerly Institut Francais des Sciences et Technologies des Transports de l’Amenagement et des Reseaux (IFSTTAR)) in Nantes with the application of the European standard EN 13286-7: 2004 [1]. The tests were performed at constant confinement stress and using the stepwise method to determine the resilient axial () and radial () deformation as a function of the axial and radial stresses. Four gravel lateritic soils from different sites selected in Burkina Faso and Senegal were the subject of this research for the triaxial tests. These materials have a maximum diameter of 20 mm and a percentage of fines less than 20%. The LRT tests were carried out on samples compacted at three moisture contents (wopm - 2%, wopm and wopm + 2%) and at 95% and 100% of optimal dry density (γdopm). Test results showed that the characteristic resilient Young’s modulus (Ec) of gravelly laterites soils depends on the compacted water content and the variation of the grains size distribution (sand (o 20%), mortar and sand (Sindia and Lam-Lam) are more sensitive to variations in water content. The presence of water combined with the excess of fines leads to a decrease in modulus around 25% for Lam-Lam and 20.2% for Sindia. Materials containing a low percent of fines, mortar and sand (Badnogo and Dedougou) behave differently. And the resilient modulus increases about 225.67% for Badnogo and 312.24% for Dedougou with the rise of the water content for approximately unchanged the percentage of fines, mortar and sand. Granularity therefore has an indirect influence on the resilient modulus of the lateritic soils by controlling the effects of water on the entire system. Results of statistical analysis and coefficients of correlation (0.659 to 0.865) showed that the anisotropic Boyce’s model is suitable to predict the volumetric () and deviatoric strain () with stress path (Δq/Δp) of the lateritic soils. The predicted Er resilient Young’s modulus from anisotropic Boyce’s model varies according to the evolution of the bulk stress (). A correlation around 0.9 is obtained from the power law model.","PeriodicalId":302856,"journal":{"name":"Open Journal of Civil Engineering","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Effect of Water Content and Grains Size Distribution on the Characteristic Resilient Young’s Modulus (Ec) Obtained Using Anisotropic Boyce Model on Gravelly Lateritic Soils from Tropical Africa (Burkina Faso and Senegal)\",\"authors\":\"Bibalo Ida Josiane Ki, Makhaly Bâ, Rokhaya Gueye, P. Hornych, Ahmad Sana\",\"doi\":\"10.4236/OJCE.2021.111009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research was carried out to determine the rheological parameters of lateritic soils in order to contribute to the improvement of the technical documents used for pavement design in tropical Africa. The study is based on the loading repeated of cyclic triaxial tests (LRT) performed at University Gustave Eiffel (formerly Institut Francais des Sciences et Technologies des Transports de l’Amenagement et des Reseaux (IFSTTAR)) in Nantes with the application of the European standard EN 13286-7: 2004 [1]. The tests were performed at constant confinement stress and using the stepwise method to determine the resilient axial () and radial () deformation as a function of the axial and radial stresses. Four gravel lateritic soils from different sites selected in Burkina Faso and Senegal were the subject of this research for the triaxial tests. These materials have a maximum diameter of 20 mm and a percentage of fines less than 20%. The LRT tests were carried out on samples compacted at three moisture contents (wopm - 2%, wopm and wopm + 2%) and at 95% and 100% of optimal dry density (γdopm). Test results showed that the characteristic resilient Young’s modulus (Ec) of gravelly laterites soils depends on the compacted water content and the variation of the grains size distribution (sand (o 20%), mortar and sand (Sindia and Lam-Lam) are more sensitive to variations in water content. The presence of water combined with the excess of fines leads to a decrease in modulus around 25% for Lam-Lam and 20.2% for Sindia. Materials containing a low percent of fines, mortar and sand (Badnogo and Dedougou) behave differently. And the resilient modulus increases about 225.67% for Badnogo and 312.24% for Dedougou with the rise of the water content for approximately unchanged the percentage of fines, mortar and sand. Granularity therefore has an indirect influence on the resilient modulus of the lateritic soils by controlling the effects of water on the entire system. Results of statistical analysis and coefficients of correlation (0.659 to 0.865) showed that the anisotropic Boyce’s model is suitable to predict the volumetric () and deviatoric strain () with stress path (Δq/Δp) of the lateritic soils. The predicted Er resilient Young’s modulus from anisotropic Boyce’s model varies according to the evolution of the bulk stress (). A correlation around 0.9 is obtained from the power law model.\",\"PeriodicalId\":302856,\"journal\":{\"name\":\"Open Journal of Civil Engineering\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Journal of Civil Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/OJCE.2021.111009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Journal of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/OJCE.2021.111009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

这项研究是为了确定红土的流变参数,以有助于改进用于热带非洲路面设计的技术文件。该研究基于在南特Gustave Eiffel大学(原法国科学与技术、交通、管理与资源研究所(IFSTTAR))进行的循环三轴试验(LRT)的重复加载,应用欧洲标准EN 13286- 7:20 2004[1]。试验在恒定约束应力下进行,并使用逐步方法确定弹性轴向()和径向()变形作为轴向和径向应力的函数。本研究选取了布基纳法索和塞内加尔不同地点的四种砂砾红土进行三轴试验。这些材料的最大直径为20mm,细粒百分比小于20%。在三种含水量(wopm - 2%、wopm和wopm + 2%)和最佳干密度(γdopm)的95%和100%压实的样品上进行了LRT试验。试验结果表明,砂质红土的典型弹性杨氏模量(Ec)取决于压实含水量,且砂(0 - 20%)、砂浆和砂(Sindia和Lam-Lam)的粒度分布变化对含水量变化更为敏感。水的存在加上过量的细粒导致Lam-Lam和Sindia的模量分别下降了25%和20.2%。含有少量细粉、砂浆和沙子(Badnogo和deougou)的材料表现不同。在细粉、砂浆、砂石掺量基本不变的情况下,随着含水率的增加,巴德诺戈的弹性模量增加了225.67%,德杜古的弹性模量增加了312.24%。因此,粒度通过控制水对整个系统的影响,对红土的弹性模量有间接影响。统计分析结果和相关系数(0.659 ~ 0.865)表明,各向异性Boyce模型适用于预测红土在应力路径(Δq/Δp)下的体积应变()和偏应变()。各向异性Boyce模型预测的弹性杨氏模量随体应力的变化而变化()。幂律模型的相关系数约为0.9。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of Water Content and Grains Size Distribution on the Characteristic Resilient Young’s Modulus (Ec) Obtained Using Anisotropic Boyce Model on Gravelly Lateritic Soils from Tropical Africa (Burkina Faso and Senegal)
This research was carried out to determine the rheological parameters of lateritic soils in order to contribute to the improvement of the technical documents used for pavement design in tropical Africa. The study is based on the loading repeated of cyclic triaxial tests (LRT) performed at University Gustave Eiffel (formerly Institut Francais des Sciences et Technologies des Transports de l’Amenagement et des Reseaux (IFSTTAR)) in Nantes with the application of the European standard EN 13286-7: 2004 [1]. The tests were performed at constant confinement stress and using the stepwise method to determine the resilient axial () and radial () deformation as a function of the axial and radial stresses. Four gravel lateritic soils from different sites selected in Burkina Faso and Senegal were the subject of this research for the triaxial tests. These materials have a maximum diameter of 20 mm and a percentage of fines less than 20%. The LRT tests were carried out on samples compacted at three moisture contents (wopm - 2%, wopm and wopm + 2%) and at 95% and 100% of optimal dry density (γdopm). Test results showed that the characteristic resilient Young’s modulus (Ec) of gravelly laterites soils depends on the compacted water content and the variation of the grains size distribution (sand (o 20%), mortar and sand (Sindia and Lam-Lam) are more sensitive to variations in water content. The presence of water combined with the excess of fines leads to a decrease in modulus around 25% for Lam-Lam and 20.2% for Sindia. Materials containing a low percent of fines, mortar and sand (Badnogo and Dedougou) behave differently. And the resilient modulus increases about 225.67% for Badnogo and 312.24% for Dedougou with the rise of the water content for approximately unchanged the percentage of fines, mortar and sand. Granularity therefore has an indirect influence on the resilient modulus of the lateritic soils by controlling the effects of water on the entire system. Results of statistical analysis and coefficients of correlation (0.659 to 0.865) showed that the anisotropic Boyce’s model is suitable to predict the volumetric () and deviatoric strain () with stress path (Δq/Δp) of the lateritic soils. The predicted Er resilient Young’s modulus from anisotropic Boyce’s model varies according to the evolution of the bulk stress (). A correlation around 0.9 is obtained from the power law model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interchange Sight Distance and Design: Aspects and Implementation A Slip-Force Device for Maintaining Constant Lateral Pressure on Retaining Structures in Expansive Soils Practical Engineering Behavior of Egyptian Collapsible Soils, Laboratory and In-Situ Experimental Study Structural Health Monitoring for Reinforced Concrete Containment Using Inner Electrical Resistivity Method Hardening Properties of Foamed Concrete with Circulating Fluidized Bed Boiler Ash, Blast Furnace Slag, and Desulfurization Gypsum as the Binder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1