{"title":"基于机器学习的增材制造设计推荐系统","authors":"S. E. Ghiasian, K. Lewis","doi":"10.1115/detc2020-22182","DOIUrl":null,"url":null,"abstract":"\n To appropriately leverage the benefits of Additive Manufacturing (AM), it would be advantageous if a printing could be guaranteed before allocating the necessary resources. Further, when considering AM for an inventory of existing components traditionally fabricated through traditional means, such a guarantee could result in significant technical and economic advantages. To realize such advantages, this paper presents a platform that allows for a successful and efficient transition of part-inventories to AM. This is accomplished using a novel design recommender system supported by machine learning, capable of making suggestions towards effective design modifications. This system uses an automatic AM-feasibility analysis of existing parts and a clustering of the parts based on similarities in their AM-feasibilities to develop a set of recommendations for those part clusters whose current designs are deemed as infeasible and/or inefficient for AM. The design modifications leverage a re-design algorithm to address not only problematic geometric issues but also potential infeasibilities associated with resource consumption. The utility of the presented modification algorithm is demonstrated using a number of case studies.","PeriodicalId":415040,"journal":{"name":"Volume 11A: 46th Design Automation Conference (DAC)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Machine Learning-Based Design Recommender System for Additive Manufacturing\",\"authors\":\"S. E. Ghiasian, K. Lewis\",\"doi\":\"10.1115/detc2020-22182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n To appropriately leverage the benefits of Additive Manufacturing (AM), it would be advantageous if a printing could be guaranteed before allocating the necessary resources. Further, when considering AM for an inventory of existing components traditionally fabricated through traditional means, such a guarantee could result in significant technical and economic advantages. To realize such advantages, this paper presents a platform that allows for a successful and efficient transition of part-inventories to AM. This is accomplished using a novel design recommender system supported by machine learning, capable of making suggestions towards effective design modifications. This system uses an automatic AM-feasibility analysis of existing parts and a clustering of the parts based on similarities in their AM-feasibilities to develop a set of recommendations for those part clusters whose current designs are deemed as infeasible and/or inefficient for AM. The design modifications leverage a re-design algorithm to address not only problematic geometric issues but also potential infeasibilities associated with resource consumption. The utility of the presented modification algorithm is demonstrated using a number of case studies.\",\"PeriodicalId\":415040,\"journal\":{\"name\":\"Volume 11A: 46th Design Automation Conference (DAC)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 11A: 46th Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2020-22182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 11A: 46th Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2020-22182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Machine Learning-Based Design Recommender System for Additive Manufacturing
To appropriately leverage the benefits of Additive Manufacturing (AM), it would be advantageous if a printing could be guaranteed before allocating the necessary resources. Further, when considering AM for an inventory of existing components traditionally fabricated through traditional means, such a guarantee could result in significant technical and economic advantages. To realize such advantages, this paper presents a platform that allows for a successful and efficient transition of part-inventories to AM. This is accomplished using a novel design recommender system supported by machine learning, capable of making suggestions towards effective design modifications. This system uses an automatic AM-feasibility analysis of existing parts and a clustering of the parts based on similarities in their AM-feasibilities to develop a set of recommendations for those part clusters whose current designs are deemed as infeasible and/or inefficient for AM. The design modifications leverage a re-design algorithm to address not only problematic geometric issues but also potential infeasibilities associated with resource consumption. The utility of the presented modification algorithm is demonstrated using a number of case studies.