利用进化算法优化风车农场模式

C. Vanaret, N. Durand, J. Alliot
{"title":"利用进化算法优化风车农场模式","authors":"C. Vanaret, N. Durand, J. Alliot","doi":"10.1145/2598394.2598506","DOIUrl":null,"url":null,"abstract":"When designing a wind farm layout, we can reduce the number of variables by optimizing a pattern instead of considering the position of each turbine. In this paper we show that, by reducing the problem to only two variables defining a grid, we can gain up to $3\\%$ of energy output on simple examples of wind farms dealing with many turbines (up to 1000) while dramatically reducing the computation time.","PeriodicalId":298232,"journal":{"name":"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Windmill farm pattern optimization using evolutionary algorithms\",\"authors\":\"C. Vanaret, N. Durand, J. Alliot\",\"doi\":\"10.1145/2598394.2598506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When designing a wind farm layout, we can reduce the number of variables by optimizing a pattern instead of considering the position of each turbine. In this paper we show that, by reducing the problem to only two variables defining a grid, we can gain up to $3\\\\%$ of energy output on simple examples of wind farms dealing with many turbines (up to 1000) while dramatically reducing the computation time.\",\"PeriodicalId\":298232,\"journal\":{\"name\":\"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2598394.2598506\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2598394.2598506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在设计风电场布局时,我们可以通过优化一个模式来减少变量的数量,而不是考虑每个涡轮机的位置。在本文中,我们表明,通过将问题简化为定义电网的两个变量,我们可以在处理许多涡轮机(多达1000台)的风电场的简单示例中获得高达3%的能量输出,同时大大减少了计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Windmill farm pattern optimization using evolutionary algorithms
When designing a wind farm layout, we can reduce the number of variables by optimizing a pattern instead of considering the position of each turbine. In this paper we show that, by reducing the problem to only two variables defining a grid, we can gain up to $3\%$ of energy output on simple examples of wind farms dealing with many turbines (up to 1000) while dramatically reducing the computation time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolutionary synthesis of dynamical systems: the past, current, and future Incremental evolution of HERCL programs for robust control Selecting evolutionary operators using reinforcement learning: initial explorations Flood evolution: changing the evolutionary substrate from a path of stepping stones to a field of rocks Artificial immune systems for optimisation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1