{"title":"随机自组织映射变体与R包SOMbrero","authors":"N. Villa-Vialaneix","doi":"10.1109/WSOM.2017.8020014","DOIUrl":null,"url":null,"abstract":"Self-Organizing Maps (SOM) [ ] are a popular clustering and visualization algorithm. Several implementations of the SOM algorithm exist in different mathematical/statistical softwares, the main one being probably the SOM Toolbox [2]. In this presentation, we will introduce an R package, SOMbrero, which implements several variants of the stochastic SOM algorithm. The package includes several diagnosis tools and graphics for interpretation of the results and is provided with a complete documentation and examples.","PeriodicalId":130086,"journal":{"name":"2017 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Stochastic self-organizing map variants with the R package SOMbrero\",\"authors\":\"N. Villa-Vialaneix\",\"doi\":\"10.1109/WSOM.2017.8020014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Self-Organizing Maps (SOM) [ ] are a popular clustering and visualization algorithm. Several implementations of the SOM algorithm exist in different mathematical/statistical softwares, the main one being probably the SOM Toolbox [2]. In this presentation, we will introduce an R package, SOMbrero, which implements several variants of the stochastic SOM algorithm. The package includes several diagnosis tools and graphics for interpretation of the results and is provided with a complete documentation and examples.\",\"PeriodicalId\":130086,\"journal\":{\"name\":\"2017 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSOM.2017.8020014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSOM.2017.8020014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

自组织地图(SOM)[]是一种流行的聚类和可视化算法。SOM算法的几种实现存在于不同的数学/统计软件中,主要的可能是SOM工具箱[2]。在本演讲中,我们将介绍一个R包SOMbrero,它实现了随机SOM算法的几个变体。该软件包包括几个诊断工具和图形解释的结果,并提供了一个完整的文档和例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stochastic self-organizing map variants with the R package SOMbrero
Self-Organizing Maps (SOM) [ ] are a popular clustering and visualization algorithm. Several implementations of the SOM algorithm exist in different mathematical/statistical softwares, the main one being probably the SOM Toolbox [2]. In this presentation, we will introduce an R package, SOMbrero, which implements several variants of the stochastic SOM algorithm. The package includes several diagnosis tools and graphics for interpretation of the results and is provided with a complete documentation and examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Empirical evaluation of gradient methods for matrix learning vector quantization Fusion of deep learning architectures, multilayer feedforward networks and learning vector quantizers for deep classification learning Prototypes and matrix relevance learning in complex fourier space Imputation of reactive silica and available alumina in bauxites by self-organizing maps An evolutionary building algorithm for Deep Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1