保护隐私的群体感知Wi-Fi探测行为特征

Pegah Torkamandi, Ljubica Kärkkäinen, J. Ott
{"title":"保护隐私的群体感知Wi-Fi探测行为特征","authors":"Pegah Torkamandi, Ljubica Kärkkäinen, J. Ott","doi":"10.1145/3551659.3559039","DOIUrl":null,"url":null,"abstract":"Smartphones and the signaling messages they emit allow third parties to learn about the owners' mobility. While Wi-Fi and Bluetooth signaling messages have been (mis)used for tracking individuals, there are also privacy-respecting uses: crowd sensing for estimating the number of people in an area and their dynamics, is one such example. However, the very useful countermeasures against individual tracking, most prominently MAC address randomization, also complicate crowd size estimation. In this paper, we present an online estimation algorithm that operates only on ephemeral MAC addresses and, if desired, signal strength information to distinguish relevant signals from background noise. We use measurements and simulations to calibrate our counting algorithm and collect numerous data sets which we use to explore the algorithm's performance in different scenarios.","PeriodicalId":423926,"journal":{"name":"Proceedings of the 25th International ACM Conference on Modeling Analysis and Simulation of Wireless and Mobile Systems","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Characterizing Wi-Fi Probing Behavior for Privacy-Preserving Crowdsensing\",\"authors\":\"Pegah Torkamandi, Ljubica Kärkkäinen, J. Ott\",\"doi\":\"10.1145/3551659.3559039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Smartphones and the signaling messages they emit allow third parties to learn about the owners' mobility. While Wi-Fi and Bluetooth signaling messages have been (mis)used for tracking individuals, there are also privacy-respecting uses: crowd sensing for estimating the number of people in an area and their dynamics, is one such example. However, the very useful countermeasures against individual tracking, most prominently MAC address randomization, also complicate crowd size estimation. In this paper, we present an online estimation algorithm that operates only on ephemeral MAC addresses and, if desired, signal strength information to distinguish relevant signals from background noise. We use measurements and simulations to calibrate our counting algorithm and collect numerous data sets which we use to explore the algorithm's performance in different scenarios.\",\"PeriodicalId\":423926,\"journal\":{\"name\":\"Proceedings of the 25th International ACM Conference on Modeling Analysis and Simulation of Wireless and Mobile Systems\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th International ACM Conference on Modeling Analysis and Simulation of Wireless and Mobile Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3551659.3559039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th International ACM Conference on Modeling Analysis and Simulation of Wireless and Mobile Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3551659.3559039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

智能手机及其发出的信号信息可以让第三方了解用户的移动情况。虽然Wi-Fi和蓝牙信号信息已经(错误地)用于跟踪个人,但也有一些尊重隐私的用途:用于估计一个地区的人数及其动态的人群感知就是这样一个例子。然而,针对个人跟踪的非常有用的对策,最突出的是MAC地址随机化,也使人群规模估计复杂化。在本文中,我们提出了一种在线估计算法,该算法仅对短暂的MAC地址和(如果需要的话)信号强度信息进行操作,以区分相关信号和背景噪声。我们使用测量和模拟来校准我们的计数算法,并收集大量数据集,我们使用这些数据集来探索算法在不同场景下的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Characterizing Wi-Fi Probing Behavior for Privacy-Preserving Crowdsensing
Smartphones and the signaling messages they emit allow third parties to learn about the owners' mobility. While Wi-Fi and Bluetooth signaling messages have been (mis)used for tracking individuals, there are also privacy-respecting uses: crowd sensing for estimating the number of people in an area and their dynamics, is one such example. However, the very useful countermeasures against individual tracking, most prominently MAC address randomization, also complicate crowd size estimation. In this paper, we present an online estimation algorithm that operates only on ephemeral MAC addresses and, if desired, signal strength information to distinguish relevant signals from background noise. We use measurements and simulations to calibrate our counting algorithm and collect numerous data sets which we use to explore the algorithm's performance in different scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interference Aware Heuristics to Optimize Power Beacons for Battery-less WSNs The Interplay Between Intelligent Networks and Enabling Technologies for Future Wireless Networks A Novel Mixed Method of Machine Learning Based Models in Vehicular Traffic Flow Prediction Characterizing Wi-Fi Probing Behavior for Privacy-Preserving Crowdsensing Anonymized Counting of Nonstationary Wi-Fi Devices When Monitoring Crowds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1