P. Hon, Katherine T Fountaine, S. Larouche, M. DuPuis, E. Poutrina, M. Marciniak, Matthew R. Miller, A. Urbas
{"title":"利用元光学设计混合透镜以增强光学性能","authors":"P. Hon, Katherine T Fountaine, S. Larouche, M. DuPuis, E. Poutrina, M. Marciniak, Matthew R. Miller, A. Urbas","doi":"10.1117/12.2596639","DOIUrl":null,"url":null,"abstract":"Incorporating planar optics such as metalenses or metacorrectors into optical designs can drastically improve the performance of imaging systems with additional benefits such as cost, size and weight improvements. However, modeling of such hybrid lenses is challenging because of the multiscale nature of the simulation. In this presentation, we show how to combine ray optic simulations with full wave simulations and Fourier optics approaches to model a whole compound lens considering all metasurface unit cell interactions and to study the effect of possible fabrication errors.","PeriodicalId":389503,"journal":{"name":"Metamaterials, Metadevices, and Metasystems 2021","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing hybrid lenses using metaoptics for enhanced optical performance\",\"authors\":\"P. Hon, Katherine T Fountaine, S. Larouche, M. DuPuis, E. Poutrina, M. Marciniak, Matthew R. Miller, A. Urbas\",\"doi\":\"10.1117/12.2596639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Incorporating planar optics such as metalenses or metacorrectors into optical designs can drastically improve the performance of imaging systems with additional benefits such as cost, size and weight improvements. However, modeling of such hybrid lenses is challenging because of the multiscale nature of the simulation. In this presentation, we show how to combine ray optic simulations with full wave simulations and Fourier optics approaches to model a whole compound lens considering all metasurface unit cell interactions and to study the effect of possible fabrication errors.\",\"PeriodicalId\":389503,\"journal\":{\"name\":\"Metamaterials, Metadevices, and Metasystems 2021\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metamaterials, Metadevices, and Metasystems 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2596639\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metamaterials, Metadevices, and Metasystems 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2596639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Designing hybrid lenses using metaoptics for enhanced optical performance
Incorporating planar optics such as metalenses or metacorrectors into optical designs can drastically improve the performance of imaging systems with additional benefits such as cost, size and weight improvements. However, modeling of such hybrid lenses is challenging because of the multiscale nature of the simulation. In this presentation, we show how to combine ray optic simulations with full wave simulations and Fourier optics approaches to model a whole compound lens considering all metasurface unit cell interactions and to study the effect of possible fabrication errors.