基于人工神经网络的LTE-UL认知无线电系统学习方案性能分析

Ahsan Adeel, H. Larijani, A. Ahmadinia
{"title":"基于人工神经网络的LTE-UL认知无线电系统学习方案性能分析","authors":"Ahsan Adeel, H. Larijani, A. Ahmadinia","doi":"10.1109/WAINA.2014.116","DOIUrl":null,"url":null,"abstract":"Cognitive radio is widely accepted as a promising technology to intelligently manage the scarce radio resources and correspondingly select the optimal radio configurations. The process of cognition is challenging because of the trade-offs among response time, accuracy, available training samples, and NN structure complexity, which is a limiting factor for cognitive radio (CR) to achieve optimal configuration settings in real time. In this paper, a complex model of LTE uplink is analysed and a cognitive engine(CE) is introduced with ANN as an artificial intelligence technique. The CE is characterizing the achievable communication performance of all available secondary and primary users configurations. Furthermore, Suggesting the optimal radio configurations, taking into account the user requirements as well as the electromagnetic environment. Performance evaluation of the proposed ANN has revealed 60% improvement in accuracy and efficiency as compared to existing ANN models for the same parameters configurations.","PeriodicalId":424903,"journal":{"name":"2014 28th International Conference on Advanced Information Networking and Applications Workshops","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Performance Analysis of Artificial Neural Network-Based Learning Schemes for Cognitive Radio Systems in LTE-UL\",\"authors\":\"Ahsan Adeel, H. Larijani, A. Ahmadinia\",\"doi\":\"10.1109/WAINA.2014.116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cognitive radio is widely accepted as a promising technology to intelligently manage the scarce radio resources and correspondingly select the optimal radio configurations. The process of cognition is challenging because of the trade-offs among response time, accuracy, available training samples, and NN structure complexity, which is a limiting factor for cognitive radio (CR) to achieve optimal configuration settings in real time. In this paper, a complex model of LTE uplink is analysed and a cognitive engine(CE) is introduced with ANN as an artificial intelligence technique. The CE is characterizing the achievable communication performance of all available secondary and primary users configurations. Furthermore, Suggesting the optimal radio configurations, taking into account the user requirements as well as the electromagnetic environment. Performance evaluation of the proposed ANN has revealed 60% improvement in accuracy and efficiency as compared to existing ANN models for the same parameters configurations.\",\"PeriodicalId\":424903,\"journal\":{\"name\":\"2014 28th International Conference on Advanced Information Networking and Applications Workshops\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 28th International Conference on Advanced Information Networking and Applications Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WAINA.2014.116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 28th International Conference on Advanced Information Networking and Applications Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WAINA.2014.116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

认知无线电作为一种智能管理稀缺无线电资源并选择最佳无线电配置的技术,被广泛接受。认知过程具有挑战性,因为在响应时间,准确性,可用训练样本和神经网络结构复杂性之间进行权衡,这是限制认知无线电(CR)实时实现最佳配置设置的因素。本文分析了LTE上行链路的复杂模型,引入了一种基于人工智能技术的认知引擎(CE)。CE描述了所有可用的辅助和主要用户配置的可实现通信性能。在考虑用户需求和电磁环境的基础上,提出最优的无线电配置方案。对所提出的人工神经网络的性能评估显示,在相同参数配置下,与现有的人工神经网络模型相比,准确率和效率提高了60%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance Analysis of Artificial Neural Network-Based Learning Schemes for Cognitive Radio Systems in LTE-UL
Cognitive radio is widely accepted as a promising technology to intelligently manage the scarce radio resources and correspondingly select the optimal radio configurations. The process of cognition is challenging because of the trade-offs among response time, accuracy, available training samples, and NN structure complexity, which is a limiting factor for cognitive radio (CR) to achieve optimal configuration settings in real time. In this paper, a complex model of LTE uplink is analysed and a cognitive engine(CE) is introduced with ANN as an artificial intelligence technique. The CE is characterizing the achievable communication performance of all available secondary and primary users configurations. Furthermore, Suggesting the optimal radio configurations, taking into account the user requirements as well as the electromagnetic environment. Performance evaluation of the proposed ANN has revealed 60% improvement in accuracy and efficiency as compared to existing ANN models for the same parameters configurations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Internet of Things-Based Model for Smart Water Management Distributed Uncertain Data Mining for Frequent Patterns Satisfying Anti-monotonic Constraints A Secure Framework for Communications in Heterogeneous Networks Dynamic Bandwidth Distribution for Entertainment Vehicular Networks Applications WWF: Web Application Workload Balancing Framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1