超宽带皮纳秒脉冲分频合成器的分析与实验研究

V. Fedorov, N. Malyutin, N. Drobotun
{"title":"超宽带皮纳秒脉冲分频合成器的分析与实验研究","authors":"V. Fedorov, N. Malyutin, N. Drobotun","doi":"10.1109/USBEREIT.2018.8384622","DOIUrl":null,"url":null,"abstract":"The operation of ultra-wideband power dividers based on coupled lines under the influence of picosecond impulses are considered. The divider consists of seven links: a single-stage splitter on a three-wire strip line and six cascades of quarter-wave transformers on two-wire coupled lines. The possibility of using dividers as combiners of pulse signals fed to the outputs of the dividers is shown. It is shown that the decoupling of the output ports and the transmission factor between the input port and the output ports, measured in the pulsed mode and under the influence of the chirp signal, are significantly different. Conditions for increasing the decoupling of the divider outputs in the pulsed mode are given. The divider is made on a ceramic substrate with an area of 5.5×1.2 mm and provides decoupling in the frequency band from 10 GHz to 67 GHz not worse than 18 dB, and maximum return losses not worse than 12 dB at insertion loss from −3,5 to −4.4 dB in frequency range.","PeriodicalId":176222,"journal":{"name":"2018 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis and experimental research of ultrawideband divider-combiner of pico- and nanosecond pulses\",\"authors\":\"V. Fedorov, N. Malyutin, N. Drobotun\",\"doi\":\"10.1109/USBEREIT.2018.8384622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The operation of ultra-wideband power dividers based on coupled lines under the influence of picosecond impulses are considered. The divider consists of seven links: a single-stage splitter on a three-wire strip line and six cascades of quarter-wave transformers on two-wire coupled lines. The possibility of using dividers as combiners of pulse signals fed to the outputs of the dividers is shown. It is shown that the decoupling of the output ports and the transmission factor between the input port and the output ports, measured in the pulsed mode and under the influence of the chirp signal, are significantly different. Conditions for increasing the decoupling of the divider outputs in the pulsed mode are given. The divider is made on a ceramic substrate with an area of 5.5×1.2 mm and provides decoupling in the frequency band from 10 GHz to 67 GHz not worse than 18 dB, and maximum return losses not worse than 12 dB at insertion loss from −3,5 to −4.4 dB in frequency range.\",\"PeriodicalId\":176222,\"journal\":{\"name\":\"2018 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT)\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/USBEREIT.2018.8384622\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/USBEREIT.2018.8384622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了基于耦合线的超宽带功率分配器在皮秒脉冲作用下的工作原理。分频器由七个环节组成:三线带状线路上的单级分频器和双线耦合线路上的六级四分之一波变压器。使用分频器作为脉冲信号的合成器馈送到分频器的输出的可能性被显示。结果表明,在脉冲模式下和啁啾信号的影响下,输出端口的去耦和输入端口与输出端口之间的传输系数有显著差异。给出了在脉冲模式下增加分频器输出去耦的条件。该分频器采用面积为5.5×1.2 mm的陶瓷基片,在10 GHz至67 GHz频带内提供不小于18 dB的去耦,在−3.5至−4.4 dB的频率范围内提供不小于12 dB的最大回波损耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis and experimental research of ultrawideband divider-combiner of pico- and nanosecond pulses
The operation of ultra-wideband power dividers based on coupled lines under the influence of picosecond impulses are considered. The divider consists of seven links: a single-stage splitter on a three-wire strip line and six cascades of quarter-wave transformers on two-wire coupled lines. The possibility of using dividers as combiners of pulse signals fed to the outputs of the dividers is shown. It is shown that the decoupling of the output ports and the transmission factor between the input port and the output ports, measured in the pulsed mode and under the influence of the chirp signal, are significantly different. Conditions for increasing the decoupling of the divider outputs in the pulsed mode are given. The divider is made on a ceramic substrate with an area of 5.5×1.2 mm and provides decoupling in the frequency band from 10 GHz to 67 GHz not worse than 18 dB, and maximum return losses not worse than 12 dB at insertion loss from −3,5 to −4.4 dB in frequency range.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
New mathematical model for analysis of open circular dielectric waveguides The influence of load variations on the of autodyne response formation in microwave oscillators under strong reflected emission Simulation modeling as a service for intelligent systems A FMCW — Interferometry approach for ultrasonic flow meters Stabilization of keplerate-type spheric porous nanocluster polyoxometalate Mo72Fe30
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1