{"title":"基于并行计算和XGBoost的振动时间序列分类","authors":"Peng Liu","doi":"10.1109/ICPHM57936.2023.10193920","DOIUrl":null,"url":null,"abstract":"This manuscript documents our approach to addressing the data challenge posted by ICPHM23 conference [1]. The task is a time series classification problem. We see two general toolsets can be used to complete the task and produce promising high accuracy for such a large data set. One is deep neural networks, and the other is gradient boosting. We choose gradient boosting. During feature preparation, we developed a customized C++ parallel computing software to extract all desired features. The manuscript includes our thought process and final cross validation results.","PeriodicalId":169274,"journal":{"name":"2023 IEEE International Conference on Prognostics and Health Management (ICPHM)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Vibration Time Series Classification using Parallel Computing and XGBoost\",\"authors\":\"Peng Liu\",\"doi\":\"10.1109/ICPHM57936.2023.10193920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This manuscript documents our approach to addressing the data challenge posted by ICPHM23 conference [1]. The task is a time series classification problem. We see two general toolsets can be used to complete the task and produce promising high accuracy for such a large data set. One is deep neural networks, and the other is gradient boosting. We choose gradient boosting. During feature preparation, we developed a customized C++ parallel computing software to extract all desired features. The manuscript includes our thought process and final cross validation results.\",\"PeriodicalId\":169274,\"journal\":{\"name\":\"2023 IEEE International Conference on Prognostics and Health Management (ICPHM)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Prognostics and Health Management (ICPHM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPHM57936.2023.10193920\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Prognostics and Health Management (ICPHM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPHM57936.2023.10193920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Vibration Time Series Classification using Parallel Computing and XGBoost
This manuscript documents our approach to addressing the data challenge posted by ICPHM23 conference [1]. The task is a time series classification problem. We see two general toolsets can be used to complete the task and produce promising high accuracy for such a large data set. One is deep neural networks, and the other is gradient boosting. We choose gradient boosting. During feature preparation, we developed a customized C++ parallel computing software to extract all desired features. The manuscript includes our thought process and final cross validation results.