基于并行计算和XGBoost的振动时间序列分类

Peng Liu
{"title":"基于并行计算和XGBoost的振动时间序列分类","authors":"Peng Liu","doi":"10.1109/ICPHM57936.2023.10193920","DOIUrl":null,"url":null,"abstract":"This manuscript documents our approach to addressing the data challenge posted by ICPHM23 conference [1]. The task is a time series classification problem. We see two general toolsets can be used to complete the task and produce promising high accuracy for such a large data set. One is deep neural networks, and the other is gradient boosting. We choose gradient boosting. During feature preparation, we developed a customized C++ parallel computing software to extract all desired features. The manuscript includes our thought process and final cross validation results.","PeriodicalId":169274,"journal":{"name":"2023 IEEE International Conference on Prognostics and Health Management (ICPHM)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Vibration Time Series Classification using Parallel Computing and XGBoost\",\"authors\":\"Peng Liu\",\"doi\":\"10.1109/ICPHM57936.2023.10193920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This manuscript documents our approach to addressing the data challenge posted by ICPHM23 conference [1]. The task is a time series classification problem. We see two general toolsets can be used to complete the task and produce promising high accuracy for such a large data set. One is deep neural networks, and the other is gradient boosting. We choose gradient boosting. During feature preparation, we developed a customized C++ parallel computing software to extract all desired features. The manuscript includes our thought process and final cross validation results.\",\"PeriodicalId\":169274,\"journal\":{\"name\":\"2023 IEEE International Conference on Prognostics and Health Management (ICPHM)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Prognostics and Health Management (ICPHM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPHM57936.2023.10193920\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Prognostics and Health Management (ICPHM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPHM57936.2023.10193920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文记录了我们解决ICPHM23会议[1]发布的数据挑战的方法。该任务是一个时间序列分类问题。我们看到两个通用的工具集可以用来完成任务,并为如此大的数据集产生有希望的高精度。一个是深度神经网络,另一个是梯度增强。我们选择梯度增强。在特征准备过程中,我们开发了一个定制的c++并行计算软件来提取所有需要的特征。手稿包括我们的思考过程和最终的交叉验证结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Vibration Time Series Classification using Parallel Computing and XGBoost
This manuscript documents our approach to addressing the data challenge posted by ICPHM23 conference [1]. The task is a time series classification problem. We see two general toolsets can be used to complete the task and produce promising high accuracy for such a large data set. One is deep neural networks, and the other is gradient boosting. We choose gradient boosting. During feature preparation, we developed a customized C++ parallel computing software to extract all desired features. The manuscript includes our thought process and final cross validation results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling Operational Risk to Improve Reliability of Unmanned Aerial Vehicles Optimizing Flight Control of Unmanned Aerial Vehicles with Physics-Based Reliability Models A Comprehensive Approach for Gearbox Fault Detection and Diagnosis Using Sequential Neural Networks Bearing compound fault diagnosis based on enhanced variational mode extraction algorithm Fault State Prediction Model of Repaired Equipment Considering Maintenance Effect
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1