基于随机递归神经网络的多元时间序列鲁棒异常检测

Ya Su, Youjian Zhao, Chenhao Niu, Rong Liu, Wei Sun, Dan Pei
{"title":"基于随机递归神经网络的多元时间序列鲁棒异常检测","authors":"Ya Su, Youjian Zhao, Chenhao Niu, Rong Liu, Wei Sun, Dan Pei","doi":"10.1145/3292500.3330672","DOIUrl":null,"url":null,"abstract":"Industry devices (i.e., entities) such as server machines, spacecrafts, engines, etc., are typically monitored with multivariate time series, whose anomaly detection is critical for an entity's service quality management. However, due to the complex temporal dependence and stochasticity of multivariate time series, their anomaly detection remains a big challenge. This paper proposes OmniAnomaly, a stochastic recurrent neural network for multivariate time series anomaly detection that works well robustly for various devices. Its core idea is to capture the normal patterns of multivariate time series by learning their robust representations with key techniques such as stochastic variable connection and planar normalizing flow, reconstruct input data by the representations, and use the reconstruction probabilities to determine anomalies. Moreover, for a detected entity anomaly, OmniAnomaly can provide interpretations based on the reconstruction probabilities of its constituent univariate time series. The evaluation experiments are conducted on two public datasets from aerospace and a new server machine dataset (collected and released by us) from an Internet company. OmniAnomaly achieves an overall F1-Score of 0.86 in three real-world datasets, signicantly outperforming the best performing baseline method by 0.09. The interpretation accuracy for OmniAnomaly is up to 0.89.","PeriodicalId":186134,"journal":{"name":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"584","resultStr":"{\"title\":\"Robust Anomaly Detection for Multivariate Time Series through Stochastic Recurrent Neural Network\",\"authors\":\"Ya Su, Youjian Zhao, Chenhao Niu, Rong Liu, Wei Sun, Dan Pei\",\"doi\":\"10.1145/3292500.3330672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Industry devices (i.e., entities) such as server machines, spacecrafts, engines, etc., are typically monitored with multivariate time series, whose anomaly detection is critical for an entity's service quality management. However, due to the complex temporal dependence and stochasticity of multivariate time series, their anomaly detection remains a big challenge. This paper proposes OmniAnomaly, a stochastic recurrent neural network for multivariate time series anomaly detection that works well robustly for various devices. Its core idea is to capture the normal patterns of multivariate time series by learning their robust representations with key techniques such as stochastic variable connection and planar normalizing flow, reconstruct input data by the representations, and use the reconstruction probabilities to determine anomalies. Moreover, for a detected entity anomaly, OmniAnomaly can provide interpretations based on the reconstruction probabilities of its constituent univariate time series. The evaluation experiments are conducted on two public datasets from aerospace and a new server machine dataset (collected and released by us) from an Internet company. OmniAnomaly achieves an overall F1-Score of 0.86 in three real-world datasets, signicantly outperforming the best performing baseline method by 0.09. The interpretation accuracy for OmniAnomaly is up to 0.89.\",\"PeriodicalId\":186134,\"journal\":{\"name\":\"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"584\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3292500.3330672\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3292500.3330672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 584

摘要

工业设备(即实体),如服务器机器、航天器、发动机等,通常使用多变量时间序列进行监控,其异常检测对于实体的服务质量管理至关重要。然而,由于多元时间序列具有复杂的时间依赖性和随机性,其异常检测仍然是一个很大的挑战。本文提出了一种用于多变量时间序列异常检测的随机递归神经网络OmniAnomaly,该网络对各种设备都具有良好的鲁棒性。其核心思想是利用随机变量连接、平面归一化流等关键技术,通过学习多变量时间序列的鲁棒表示来捕获多变量时间序列的正态模式,通过这些鲁棒表示重构输入数据,并利用重构概率判断异常。此外,对于检测到的实体异常,OmniAnomaly可以基于其组成的单变量时间序列的重构概率提供解释。评估实验在两个来自航空航天的公共数据集和一个来自互联网公司的新服务器机器数据集(由我们收集和发布)上进行。OmniAnomaly在三个真实数据集上的总体F1-Score为0.86,显著优于性能最好的基线方法0.09。OmniAnomaly的解释精度可达0.89。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust Anomaly Detection for Multivariate Time Series through Stochastic Recurrent Neural Network
Industry devices (i.e., entities) such as server machines, spacecrafts, engines, etc., are typically monitored with multivariate time series, whose anomaly detection is critical for an entity's service quality management. However, due to the complex temporal dependence and stochasticity of multivariate time series, their anomaly detection remains a big challenge. This paper proposes OmniAnomaly, a stochastic recurrent neural network for multivariate time series anomaly detection that works well robustly for various devices. Its core idea is to capture the normal patterns of multivariate time series by learning their robust representations with key techniques such as stochastic variable connection and planar normalizing flow, reconstruct input data by the representations, and use the reconstruction probabilities to determine anomalies. Moreover, for a detected entity anomaly, OmniAnomaly can provide interpretations based on the reconstruction probabilities of its constituent univariate time series. The evaluation experiments are conducted on two public datasets from aerospace and a new server machine dataset (collected and released by us) from an Internet company. OmniAnomaly achieves an overall F1-Score of 0.86 in three real-world datasets, signicantly outperforming the best performing baseline method by 0.09. The interpretation accuracy for OmniAnomaly is up to 0.89.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tackle Balancing Constraint for Incremental Semi-Supervised Support Vector Learning HATS Temporal Probabilistic Profiles for Sepsis Prediction in the ICU Large-scale User Visits Understanding and Forecasting with Deep Spatial-Temporal Tensor Factorization Framework Adaptive Influence Maximization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1