块状导电玻璃微通道板的制备

J. Pan, J. Lv, T. Zheng, Yanhong Li, W. Xu
{"title":"块状导电玻璃微通道板的制备","authors":"J. Pan, J. Lv, T. Zheng, Yanhong Li, W. Xu","doi":"10.1117/12.894613","DOIUrl":null,"url":null,"abstract":"Extension of Microchannel Plate (MCP) to a bulk conductive substrate was considered to be an effective approach to eliminate ion feedback problem, and a vanadium iron lead phosphate glass had been identified can be tailored to have appropriate volume conductivity and suitable for MCP fabrication. In this paper, a new reformulated vanadium iron lead alumina phosphate glass was used to fabricate a bulk conductive glass MCP, the fabrication process is in the same way as the conventional lead silicate glass MCP fabrication, but in the absence of a hydrogen firing treatment, although it was succeed in fabricating some experimental samples of 25mm diameter full active area MCP with 10μm pore diameter and 40:1~60:1 length to diameter ratio, the experimental sample also demonstrated its bulk conductivity and certain secondary electron emission property, but its gain is very low, especially its mechanical strength is insufficient. The physical and chemical properties of this vanadium iron lead alumina phosphate glass, and the performance and behavior of this glass during the bulk conductive glass MCP fabrication process, as well as its experimental sample test results were detail described.","PeriodicalId":355017,"journal":{"name":"Photoelectronic Detection and Imaging","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fabrication of a bulk conductive glass microchannel plate\",\"authors\":\"J. Pan, J. Lv, T. Zheng, Yanhong Li, W. Xu\",\"doi\":\"10.1117/12.894613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extension of Microchannel Plate (MCP) to a bulk conductive substrate was considered to be an effective approach to eliminate ion feedback problem, and a vanadium iron lead phosphate glass had been identified can be tailored to have appropriate volume conductivity and suitable for MCP fabrication. In this paper, a new reformulated vanadium iron lead alumina phosphate glass was used to fabricate a bulk conductive glass MCP, the fabrication process is in the same way as the conventional lead silicate glass MCP fabrication, but in the absence of a hydrogen firing treatment, although it was succeed in fabricating some experimental samples of 25mm diameter full active area MCP with 10μm pore diameter and 40:1~60:1 length to diameter ratio, the experimental sample also demonstrated its bulk conductivity and certain secondary electron emission property, but its gain is very low, especially its mechanical strength is insufficient. The physical and chemical properties of this vanadium iron lead alumina phosphate glass, and the performance and behavior of this glass during the bulk conductive glass MCP fabrication process, as well as its experimental sample test results were detail described.\",\"PeriodicalId\":355017,\"journal\":{\"name\":\"Photoelectronic Detection and Imaging\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photoelectronic Detection and Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.894613\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photoelectronic Detection and Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.894613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

将微通道板(MCP)扩展到大块导电基板上被认为是消除离子反馈问题的有效方法,并确定了一种磷酸钒铁铅玻璃,可以定制具有适当的体积导电性,适合于MCP的制造。本文采用新配方的钒铁铅氧化铝磷酸玻璃制备了块状导电玻璃MCP,其制备工艺与传统的铅硅酸盐玻璃MCP相同,但在没有氢烧处理的情况下,虽然成功地制备了直径为25mm、孔径为10μm、长径比为40:1~60:1的全活性区MCP的实验样品。实验样品也表现出体积导电性和一定的二次电子发射性能,但其增益很低,特别是机械强度不足。详细介绍了该磷钒铁铅铝玻璃的物理化学性能,以及该玻璃在体导电玻璃MCP制造过程中的性能和行为,以及其实验样品测试结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fabrication of a bulk conductive glass microchannel plate
Extension of Microchannel Plate (MCP) to a bulk conductive substrate was considered to be an effective approach to eliminate ion feedback problem, and a vanadium iron lead phosphate glass had been identified can be tailored to have appropriate volume conductivity and suitable for MCP fabrication. In this paper, a new reformulated vanadium iron lead alumina phosphate glass was used to fabricate a bulk conductive glass MCP, the fabrication process is in the same way as the conventional lead silicate glass MCP fabrication, but in the absence of a hydrogen firing treatment, although it was succeed in fabricating some experimental samples of 25mm diameter full active area MCP with 10μm pore diameter and 40:1~60:1 length to diameter ratio, the experimental sample also demonstrated its bulk conductivity and certain secondary electron emission property, but its gain is very low, especially its mechanical strength is insufficient. The physical and chemical properties of this vanadium iron lead alumina phosphate glass, and the performance and behavior of this glass during the bulk conductive glass MCP fabrication process, as well as its experimental sample test results were detail described.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and characterization of radiation tolerant CMOS image sensor for space applications Measuring the steel tensile deformation based on linear CCD 3D hand and palmprint acquisition using full-field composite color fringe projection Research on surface free energy of electrowetting liquid zoom lens Research on inside surface of hollow reactor based on photoelectric detecting technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1