基于vgg16深度学习的胸部CT图像冠状病毒(COVID-19)自动检测

Abolfazl Karimiyan Abdar, S. M. Sadjadi, H. Soltanian-Zadeh, Ali Bashirgonbadi, M. Naghibi
{"title":"基于vgg16深度学习的胸部CT图像冠状病毒(COVID-19)自动检测","authors":"Abolfazl Karimiyan Abdar, S. M. Sadjadi, H. Soltanian-Zadeh, Ali Bashirgonbadi, M. Naghibi","doi":"10.1109/ICBME51989.2020.9319326","DOIUrl":null,"url":null,"abstract":"In recent months, coronavirus disease 2019 (COVID-19) has infected millions of people worldwide. In addition to the clinical tests like reverse transcription-polymerase chain reaction (RT-PCR), medical imaging techniques such as computed tomography (CT) can be used as a rapid technique to detect and evaluate patients infected by COVID-19. Conventionally, CT-based COVID-19 classification is done by a radiology expert. In this paper, we present a deep learning-based Convolutional Neural Network (CNN) model we developed for the classification of COVID-19 positive patients from healthy subjects using chest CT. We used 10979 chest CT images of 131 patients with COVID-19 and 150 healthy subjects for training, validating, and testing of the proposed model. Evaluation of the results showed the precision of 92%, sensitivity of 90%, specificity of 91%, F1-Score of 0.91, and accuracy of 90%. We have used the regions of infection segmented by a radiologist to increase the generalization and reliability of the results. The plotted heatmaps show that the developed model has focused only on the infected regions of the lungs by COVID-19 to make decisions.","PeriodicalId":120969,"journal":{"name":"2020 27th National and 5th International Iranian Conference on Biomedical Engineering (ICBME)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Automatic Detection of Coronavirus (COVID-19) from Chest CT Images using VGG16-Based Deep-Learning\",\"authors\":\"Abolfazl Karimiyan Abdar, S. M. Sadjadi, H. Soltanian-Zadeh, Ali Bashirgonbadi, M. Naghibi\",\"doi\":\"10.1109/ICBME51989.2020.9319326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent months, coronavirus disease 2019 (COVID-19) has infected millions of people worldwide. In addition to the clinical tests like reverse transcription-polymerase chain reaction (RT-PCR), medical imaging techniques such as computed tomography (CT) can be used as a rapid technique to detect and evaluate patients infected by COVID-19. Conventionally, CT-based COVID-19 classification is done by a radiology expert. In this paper, we present a deep learning-based Convolutional Neural Network (CNN) model we developed for the classification of COVID-19 positive patients from healthy subjects using chest CT. We used 10979 chest CT images of 131 patients with COVID-19 and 150 healthy subjects for training, validating, and testing of the proposed model. Evaluation of the results showed the precision of 92%, sensitivity of 90%, specificity of 91%, F1-Score of 0.91, and accuracy of 90%. We have used the regions of infection segmented by a radiologist to increase the generalization and reliability of the results. The plotted heatmaps show that the developed model has focused only on the infected regions of the lungs by COVID-19 to make decisions.\",\"PeriodicalId\":120969,\"journal\":{\"name\":\"2020 27th National and 5th International Iranian Conference on Biomedical Engineering (ICBME)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 27th National and 5th International Iranian Conference on Biomedical Engineering (ICBME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBME51989.2020.9319326\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 27th National and 5th International Iranian Conference on Biomedical Engineering (ICBME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBME51989.2020.9319326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

近几个月来,2019年冠状病毒病(COVID-19)在全球感染了数百万人。除了逆转录聚合酶链反应(RT-PCR)等临床检测外,计算机断层扫描(CT)等医学成像技术也可作为检测和评估COVID-19感染患者的快速技术。传统上,基于ct的COVID-19分类由放射学专家完成。在本文中,我们提出了一个基于深度学习的卷积神经网络(CNN)模型,该模型用于使用胸部CT对健康受试者的COVID-19阳性患者进行分类。我们使用了131名COVID-19患者和150名健康受试者的10979张胸部CT图像来训练、验证和测试所提出的模型。结果评价:精密度为92%,灵敏度为90%,特异度为91%,F1-Score为0.91,准确度为90%。我们使用了由放射科医生分割的感染区域,以增加结果的泛化和可靠性。绘制的热图显示,开发的模型只关注被COVID-19感染的肺部区域来做出决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic Detection of Coronavirus (COVID-19) from Chest CT Images using VGG16-Based Deep-Learning
In recent months, coronavirus disease 2019 (COVID-19) has infected millions of people worldwide. In addition to the clinical tests like reverse transcription-polymerase chain reaction (RT-PCR), medical imaging techniques such as computed tomography (CT) can be used as a rapid technique to detect and evaluate patients infected by COVID-19. Conventionally, CT-based COVID-19 classification is done by a radiology expert. In this paper, we present a deep learning-based Convolutional Neural Network (CNN) model we developed for the classification of COVID-19 positive patients from healthy subjects using chest CT. We used 10979 chest CT images of 131 patients with COVID-19 and 150 healthy subjects for training, validating, and testing of the proposed model. Evaluation of the results showed the precision of 92%, sensitivity of 90%, specificity of 91%, F1-Score of 0.91, and accuracy of 90%. We have used the regions of infection segmented by a radiologist to increase the generalization and reliability of the results. The plotted heatmaps show that the developed model has focused only on the infected regions of the lungs by COVID-19 to make decisions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Semi-automatic 3-D pose estimation of laparoscopic tools to generate 3-D labeled database by developing a graphical user interface Children Semantic Network Growth: A Graph Theory Analysis Autistic Children Skill Acquisition In Sport: An Experimental Study A Two-step Registration Approach: Application in MRI-based Strain Calculation of the Left Ventricle The Effect of Stem on The Knee Joint Prosthesis Flexion Considering Natural Gait Forces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1