导电聚合物枝突对磷酸盐缓冲盐水中电压尖峰爆发的可塑性

Corentin Scholaert, Kamila Janzakova, Y. Coffinier, F. Alibart, Sébastien Pecqueur
{"title":"导电聚合物枝突对磷酸盐缓冲盐水中电压尖峰爆发的可塑性","authors":"Corentin Scholaert, Kamila Janzakova, Y. Coffinier, F. Alibart, Sébastien Pecqueur","doi":"10.1088/2634-4386/ac9b85","DOIUrl":null,"url":null,"abstract":"The brain capitalizes on the complexity of both its biochemistry for neurons to encode diverse pieces of information with various neurotransmitters and its morphology at multiple scales to route different pathways for neural interconnectivity. Conducting polymer dendrites can show similar features by differentiating between cations and anions thanks to their charge accumulation profile and the asymmetry in their dendriticity that allows projecting spike signals differently. Here, we exploit such mimicry for in materio classification of bursting activity and investigate, in phosphate buffered saline, the capability of such object to sense bursts of voltage pulses of 100 mV amplitude, emitted by a local gate in the vicinity of the dendrite. The dendrite integrates the different activities with a fading memory time window that is characteristic of both the polarity of the spikes and the temporality of the burst. By this first demonstration, the ‘material-object’ definitely shows great potential to be a node halfway between the two realms of brain and electronic communication.","PeriodicalId":198030,"journal":{"name":"Neuromorphic Computing and Engineering","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plasticity of conducting polymer dendrites to bursts of voltage spikes in phosphate buffered saline\",\"authors\":\"Corentin Scholaert, Kamila Janzakova, Y. Coffinier, F. Alibart, Sébastien Pecqueur\",\"doi\":\"10.1088/2634-4386/ac9b85\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The brain capitalizes on the complexity of both its biochemistry for neurons to encode diverse pieces of information with various neurotransmitters and its morphology at multiple scales to route different pathways for neural interconnectivity. Conducting polymer dendrites can show similar features by differentiating between cations and anions thanks to their charge accumulation profile and the asymmetry in their dendriticity that allows projecting spike signals differently. Here, we exploit such mimicry for in materio classification of bursting activity and investigate, in phosphate buffered saline, the capability of such object to sense bursts of voltage pulses of 100 mV amplitude, emitted by a local gate in the vicinity of the dendrite. The dendrite integrates the different activities with a fading memory time window that is characteristic of both the polarity of the spikes and the temporality of the burst. By this first demonstration, the ‘material-object’ definitely shows great potential to be a node halfway between the two realms of brain and electronic communication.\",\"PeriodicalId\":198030,\"journal\":{\"name\":\"Neuromorphic Computing and Engineering\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuromorphic Computing and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2634-4386/ac9b85\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuromorphic Computing and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2634-4386/ac9b85","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大脑利用其生物化学的复杂性,让神经元用不同的神经递质编码不同的信息片段,并在多个尺度上利用其形态,为神经互连提供不同的途径。导电聚合物树突可以通过区分阳离子和阴离子表现出相似的特征,这要归功于它们的电荷积累剖面和树突的不对称性,这使得它们可以投射不同的尖峰信号。在这里,我们利用这种模拟来对爆发活动进行物质分类,并研究在磷酸盐缓冲盐水中,这种物体感知由树突附近的局部门发出的100 mV振幅电压脉冲爆发的能力。树突将不同的活动与一个逐渐消失的记忆时间窗口整合在一起,该时间窗口具有尖峰的极性和爆发的时间性的特征。通过这第一次演示,“实物”绝对显示出巨大的潜力,可以成为大脑和电子通信两个领域之间的一个节点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Plasticity of conducting polymer dendrites to bursts of voltage spikes in phosphate buffered saline
The brain capitalizes on the complexity of both its biochemistry for neurons to encode diverse pieces of information with various neurotransmitters and its morphology at multiple scales to route different pathways for neural interconnectivity. Conducting polymer dendrites can show similar features by differentiating between cations and anions thanks to their charge accumulation profile and the asymmetry in their dendriticity that allows projecting spike signals differently. Here, we exploit such mimicry for in materio classification of bursting activity and investigate, in phosphate buffered saline, the capability of such object to sense bursts of voltage pulses of 100 mV amplitude, emitted by a local gate in the vicinity of the dendrite. The dendrite integrates the different activities with a fading memory time window that is characteristic of both the polarity of the spikes and the temporality of the burst. By this first demonstration, the ‘material-object’ definitely shows great potential to be a node halfway between the two realms of brain and electronic communication.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
0.00%
发文量
0
期刊最新文献
Difficulties and approaches in enabling learning-in-memory using crossbar arrays of memristors A liquid optical memristor using photochromic effect and capillary effect Tissue-like interfacing of planar electrochemical organic neuromorphic devices Implementation of two-step gradual reset scheme for enhancing state uniformity of 2D hBN-based memristors for image processing Modulating short-term and long-term plasticity of polymer-based artificial synapses for neuromorphic computing and beyond
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1