能源数据集的数据表:一种具有道德意识的文档方法

Ilana Heintz
{"title":"能源数据集的数据表:一种具有道德意识的文档方法","authors":"Ilana Heintz","doi":"10.1145/3599733.3600249","DOIUrl":null,"url":null,"abstract":"This work presents an argument for the use of specific documentation for the ethical development, use, and sharing of energy datasets, and an evaluation of current practice in the energy AI community. Drawing on a recently developed resource from the broader machine learning community and applying it to the specific context of energy AI research, opportunities for more transparent collection and distribution of energy datasets are revealed. To help elucidate the utility of the datasheets and the energy community’s current level of documentation, two publicly available energy datasets are chosen for analysis. One has published documentation covering 66% of the datasheet questionnaire, while the second covers 42% of the suggested information. Two additional questions are recommended for energy-relevant datasheets that will promote ethical AI practices in the energy domain. A new resource for exploring and aligning energy datasets with demographic data is provided.","PeriodicalId":114998,"journal":{"name":"Companion Proceedings of the 14th ACM International Conference on Future Energy Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Datasheets for Energy Datasets: An Ethically-Minded Approach to Documentation\",\"authors\":\"Ilana Heintz\",\"doi\":\"10.1145/3599733.3600249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents an argument for the use of specific documentation for the ethical development, use, and sharing of energy datasets, and an evaluation of current practice in the energy AI community. Drawing on a recently developed resource from the broader machine learning community and applying it to the specific context of energy AI research, opportunities for more transparent collection and distribution of energy datasets are revealed. To help elucidate the utility of the datasheets and the energy community’s current level of documentation, two publicly available energy datasets are chosen for analysis. One has published documentation covering 66% of the datasheet questionnaire, while the second covers 42% of the suggested information. Two additional questions are recommended for energy-relevant datasheets that will promote ethical AI practices in the energy domain. A new resource for exploring and aligning energy datasets with demographic data is provided.\",\"PeriodicalId\":114998,\"journal\":{\"name\":\"Companion Proceedings of the 14th ACM International Conference on Future Energy Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Companion Proceedings of the 14th ACM International Conference on Future Energy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3599733.3600249\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Proceedings of the 14th ACM International Conference on Future Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3599733.3600249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作提出了使用特定文档进行能源数据集的道德开发、使用和共享的论点,并对能源人工智能社区的当前实践进行了评估。利用最近从更广泛的机器学习社区开发的资源,并将其应用于能源人工智能研究的具体背景,揭示了更透明地收集和分发能源数据集的机会。为了帮助阐明数据表的效用和能源社区当前的文档水平,选择了两个公开可用的能源数据集进行分析。其中一个已发布的文档涵盖了数据表问卷的66%,而第二个则涵盖了建议信息的42%。建议在能源相关数据表中增加两个问题,以促进能源领域的道德人工智能实践。提供了一种新的资源,用于探索和对齐能源数据集与人口统计数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Datasheets for Energy Datasets: An Ethically-Minded Approach to Documentation
This work presents an argument for the use of specific documentation for the ethical development, use, and sharing of energy datasets, and an evaluation of current practice in the energy AI community. Drawing on a recently developed resource from the broader machine learning community and applying it to the specific context of energy AI research, opportunities for more transparent collection and distribution of energy datasets are revealed. To help elucidate the utility of the datasheets and the energy community’s current level of documentation, two publicly available energy datasets are chosen for analysis. One has published documentation covering 66% of the datasheet questionnaire, while the second covers 42% of the suggested information. Two additional questions are recommended for energy-relevant datasheets that will promote ethical AI practices in the energy domain. A new resource for exploring and aligning energy datasets with demographic data is provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Impact of Forecast Characteristics on the Forecast Value for the Dispatchable Feeder Cost Optimization for the Edge-Cloud Continuum by Energy-Aware Workload Placement Investigating the Impact of Space Allocation Strategy on Energy-Comfort Trade-off in Office Buildings Towards closing the data gap: A project-driven distributed energy resource dataset for the U.S. Grid EXARL-PARS: Parallel Augmented Random Search Using Reinforcement Learning at Scale for Applications in Power Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1