{"title":"射流生态位技术对消防设备经济性和运行参数的影响潜力","authors":"K. Horban, O. Siryi, Myhailo Abdulin","doi":"10.20998/2078-774x.2021.02.02","DOIUrl":null,"url":null,"abstract":"The Power engineering is an inseparable part of the contemporary world that has a negative influence on the ecology; in particular it provokes the pollution of atmosphere with such harmful emissions as nitrogen and carbon oxides. Different methods are used to reduce the emission of harmful substances. The efficiency of such methods is increased when these are used in combination and not separately. The recirculation of flue gases and the use of contemporary technologies for municipal boilers, in particular jet-niche technology (JNT) enabled the reduction of NOx and СО emissions to the levels that meet the requirements of European standards simultaneously improving the efficiency of the operation of the fire-engineering facility. The principle of operation of the JNT is based on the formation of the compact stable self-controlled vortex structure and on the interaction system of flammable and oncoming oxidizer flows. This technology enables the operation at minimum recirculation values and it means that all boiler parameters can be retained, in particular starting characteristic, combustion stability and unavailability of vibration modes including a high level of fuel burnout. The obtained research data showed that NОх values were in the range of 80 to 140 mg/m3 when the oxygen content at the furnace inlet was 20% and lower for different boiler systems (DKBR-10, KVGM-6.5, PTVM-50) at CO values close to 50 mg/m2. Hence, the use of the burners of a JNT type enables the reduction of NОхemissions and retains the combustion process efficiency.","PeriodicalId":416126,"journal":{"name":"NTU \"KhPI\" Bulletin: Power and heat engineering processes and equipment","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Jet-Niche Technology Influence Potential on the Economic and Operating Parameters of the Fire-Engineering Equipment\",\"authors\":\"K. Horban, O. Siryi, Myhailo Abdulin\",\"doi\":\"10.20998/2078-774x.2021.02.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Power engineering is an inseparable part of the contemporary world that has a negative influence on the ecology; in particular it provokes the pollution of atmosphere with such harmful emissions as nitrogen and carbon oxides. Different methods are used to reduce the emission of harmful substances. The efficiency of such methods is increased when these are used in combination and not separately. The recirculation of flue gases and the use of contemporary technologies for municipal boilers, in particular jet-niche technology (JNT) enabled the reduction of NOx and СО emissions to the levels that meet the requirements of European standards simultaneously improving the efficiency of the operation of the fire-engineering facility. The principle of operation of the JNT is based on the formation of the compact stable self-controlled vortex structure and on the interaction system of flammable and oncoming oxidizer flows. This technology enables the operation at minimum recirculation values and it means that all boiler parameters can be retained, in particular starting characteristic, combustion stability and unavailability of vibration modes including a high level of fuel burnout. The obtained research data showed that NОх values were in the range of 80 to 140 mg/m3 when the oxygen content at the furnace inlet was 20% and lower for different boiler systems (DKBR-10, KVGM-6.5, PTVM-50) at CO values close to 50 mg/m2. Hence, the use of the burners of a JNT type enables the reduction of NОхemissions and retains the combustion process efficiency.\",\"PeriodicalId\":416126,\"journal\":{\"name\":\"NTU \\\"KhPI\\\" Bulletin: Power and heat engineering processes and equipment\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NTU \\\"KhPI\\\" Bulletin: Power and heat engineering processes and equipment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20998/2078-774x.2021.02.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NTU \"KhPI\" Bulletin: Power and heat engineering processes and equipment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20998/2078-774x.2021.02.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Jet-Niche Technology Influence Potential on the Economic and Operating Parameters of the Fire-Engineering Equipment
The Power engineering is an inseparable part of the contemporary world that has a negative influence on the ecology; in particular it provokes the pollution of atmosphere with such harmful emissions as nitrogen and carbon oxides. Different methods are used to reduce the emission of harmful substances. The efficiency of such methods is increased when these are used in combination and not separately. The recirculation of flue gases and the use of contemporary technologies for municipal boilers, in particular jet-niche technology (JNT) enabled the reduction of NOx and СО emissions to the levels that meet the requirements of European standards simultaneously improving the efficiency of the operation of the fire-engineering facility. The principle of operation of the JNT is based on the formation of the compact stable self-controlled vortex structure and on the interaction system of flammable and oncoming oxidizer flows. This technology enables the operation at minimum recirculation values and it means that all boiler parameters can be retained, in particular starting characteristic, combustion stability and unavailability of vibration modes including a high level of fuel burnout. The obtained research data showed that NОх values were in the range of 80 to 140 mg/m3 when the oxygen content at the furnace inlet was 20% and lower for different boiler systems (DKBR-10, KVGM-6.5, PTVM-50) at CO values close to 50 mg/m2. Hence, the use of the burners of a JNT type enables the reduction of NОхemissions and retains the combustion process efficiency.