{"title":"多视点立体图像中深度与离群值的组合估计","authors":"C. Strecha, R. Fransens, L. Gool","doi":"10.1109/CVPR.2006.78","DOIUrl":null,"url":null,"abstract":"In this paper, we present a generative model based approach to solve the multi-view stereo problem. The input images are considered to be generated by either one of two processes: (i) an inlier process, which generates the pixels which are visible from the reference camera and which obey the constant brightness assumption, and (ii) an outlier process which generates all other pixels. Depth and visibility are jointly modelled as a hiddenMarkov Random Field, and the spatial correlations of both are explicitly accounted for. Inference is made tractable by an EM-algorithm, which alternates between estimation of visibility and depth, and optimisation of model parameters. We describe and compare two implementations of the E-step of the algorithm, which correspond to the Mean Field and Bethe approximations of the free energy. The approach is validated by experiments on challenging real-world scenes, of which two are contaminated by independently moving objects.","PeriodicalId":421737,"journal":{"name":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"209","resultStr":"{\"title\":\"Combined Depth and Outlier Estimation in Multi-View Stereo\",\"authors\":\"C. Strecha, R. Fransens, L. Gool\",\"doi\":\"10.1109/CVPR.2006.78\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a generative model based approach to solve the multi-view stereo problem. The input images are considered to be generated by either one of two processes: (i) an inlier process, which generates the pixels which are visible from the reference camera and which obey the constant brightness assumption, and (ii) an outlier process which generates all other pixels. Depth and visibility are jointly modelled as a hiddenMarkov Random Field, and the spatial correlations of both are explicitly accounted for. Inference is made tractable by an EM-algorithm, which alternates between estimation of visibility and depth, and optimisation of model parameters. We describe and compare two implementations of the E-step of the algorithm, which correspond to the Mean Field and Bethe approximations of the free energy. The approach is validated by experiments on challenging real-world scenes, of which two are contaminated by independently moving objects.\",\"PeriodicalId\":421737,\"journal\":{\"name\":\"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"209\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2006.78\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2006.78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Combined Depth and Outlier Estimation in Multi-View Stereo
In this paper, we present a generative model based approach to solve the multi-view stereo problem. The input images are considered to be generated by either one of two processes: (i) an inlier process, which generates the pixels which are visible from the reference camera and which obey the constant brightness assumption, and (ii) an outlier process which generates all other pixels. Depth and visibility are jointly modelled as a hiddenMarkov Random Field, and the spatial correlations of both are explicitly accounted for. Inference is made tractable by an EM-algorithm, which alternates between estimation of visibility and depth, and optimisation of model parameters. We describe and compare two implementations of the E-step of the algorithm, which correspond to the Mean Field and Bethe approximations of the free energy. The approach is validated by experiments on challenging real-world scenes, of which two are contaminated by independently moving objects.