基于多基线的纹理自适应信念传播立体匹配密集深度图获取技术

Jin-Hyung Kim, J. Kwon, Y. Ko
{"title":"基于多基线的纹理自适应信念传播立体匹配密集深度图获取技术","authors":"Jin-Hyung Kim, J. Kwon, Y. Ko","doi":"10.1109/ELINFOCOM.2014.6914405","DOIUrl":null,"url":null,"abstract":"In this paper a new multi-baseline stereo matching framework based on a modified belief propagation algorithm is presented to acquire dense depth-map. We propose a new matching cost, Extended Mean of Absolute Differences as local evidence in order to consider all possible disparity candidates and obtain dense depth-map. Also we propose a method that decides the weight parameter λ in belief propagation algorithm adaptively to local texture activity.","PeriodicalId":360207,"journal":{"name":"2014 International Conference on Electronics, Information and Communications (ICEIC)","volume":"19 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multi-baseline based texture adaptive belief propagation stereo matching technique for dense depth-map acquisition\",\"authors\":\"Jin-Hyung Kim, J. Kwon, Y. Ko\",\"doi\":\"10.1109/ELINFOCOM.2014.6914405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a new multi-baseline stereo matching framework based on a modified belief propagation algorithm is presented to acquire dense depth-map. We propose a new matching cost, Extended Mean of Absolute Differences as local evidence in order to consider all possible disparity candidates and obtain dense depth-map. Also we propose a method that decides the weight parameter λ in belief propagation algorithm adaptively to local texture activity.\",\"PeriodicalId\":360207,\"journal\":{\"name\":\"2014 International Conference on Electronics, Information and Communications (ICEIC)\",\"volume\":\"19 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Electronics, Information and Communications (ICEIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ELINFOCOM.2014.6914405\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Electronics, Information and Communications (ICEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELINFOCOM.2014.6914405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于改进的信念传播算法的多基线立体匹配框架,以获取密集深度图。我们提出了一种新的匹配代价——扩展绝对差均值作为局部证据,以考虑所有可能的差值候选点,得到密集的深度图。提出了一种根据局部纹理活动自适应地确定信念传播算法中权重参数λ的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-baseline based texture adaptive belief propagation stereo matching technique for dense depth-map acquisition
In this paper a new multi-baseline stereo matching framework based on a modified belief propagation algorithm is presented to acquire dense depth-map. We propose a new matching cost, Extended Mean of Absolute Differences as local evidence in order to consider all possible disparity candidates and obtain dense depth-map. Also we propose a method that decides the weight parameter λ in belief propagation algorithm adaptively to local texture activity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic detection and decoding of photogrammetric coded targets Human movement detection using home network information and events on smartphones Multi-stage FIR filter design for portable digital spectrum analyzers A pose adaptive eye detection method using 3D face information Learning of social skills for Human-Robot Interaction by hierarchical HMM and interaction dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1