{"title":"高光谱成像应用的检测算法:信号处理视角","authors":"D. Manolakis","doi":"10.1109/WARSD.2003.1295218","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to present a unified, simplified, and concise, overview of spectral target detection algorithms for hyperspectral imaging applications. We focus on detection algorithms derived using established statistical techniques and whose performance is predictable under reasonable assumptions about hyperspectral imaging data. The emphasis on a signal processing perspective helps to, better understand the strengths and limitations of each algorithm, avoid unrealistic performance expectations, and apply an algorithm properly and sensibly.","PeriodicalId":395735,"journal":{"name":"IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"108","resultStr":"{\"title\":\"Detection algorithms for hyperspectral imaging applications: a signal processing perspective\",\"authors\":\"D. Manolakis\",\"doi\":\"10.1109/WARSD.2003.1295218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to present a unified, simplified, and concise, overview of spectral target detection algorithms for hyperspectral imaging applications. We focus on detection algorithms derived using established statistical techniques and whose performance is predictable under reasonable assumptions about hyperspectral imaging data. The emphasis on a signal processing perspective helps to, better understand the strengths and limitations of each algorithm, avoid unrealistic performance expectations, and apply an algorithm properly and sensibly.\",\"PeriodicalId\":395735,\"journal\":{\"name\":\"IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"108\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WARSD.2003.1295218\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WARSD.2003.1295218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Detection algorithms for hyperspectral imaging applications: a signal processing perspective
The purpose of this paper is to present a unified, simplified, and concise, overview of spectral target detection algorithms for hyperspectral imaging applications. We focus on detection algorithms derived using established statistical techniques and whose performance is predictable under reasonable assumptions about hyperspectral imaging data. The emphasis on a signal processing perspective helps to, better understand the strengths and limitations of each algorithm, avoid unrealistic performance expectations, and apply an algorithm properly and sensibly.