transnn - hae:用于盲图像绘制的变压器- cnn混合自编码器

Haoru Zhao, Zhaorui Gu, Bing Zheng, Haiyong Zheng
{"title":"transnn - hae:用于盲图像绘制的变压器- cnn混合自编码器","authors":"Haoru Zhao, Zhaorui Gu, Bing Zheng, Haiyong Zheng","doi":"10.1145/3503161.3547848","DOIUrl":null,"url":null,"abstract":"Blind image inpainting is extremely challenging due to the unknown and multi-property complexity of contamination in different contaminated images. Current mainstream work decomposes blind image inpainting into two stages: mask estimating from the contaminated image and image inpainting based on the estimated mask, and this two-stage solution involves two CNN-based encoder-decoder architectures for estimating and inpainting separately. In this work, we propose a novel one-stage Transformer-CNN Hybrid AutoEncoder (TransCNN-HAE) for blind image inpainting, which intuitively follows the inpainting-then-reconstructing pipeline by leveraging global long-range contextual modeling of Transformer to repair contaminated regions and local short-range contextual modeling of CNN to reconstruct the repaired image. Moreover, a Cross-layer Dissimilarity Prompt (CDP) is devised to accelerate the identifying and inpainting of contaminated regions. Ablation studies validate the efficacy of both TransCNN-HAE and CDP, and extensive experiments on various datasets with multi-property contaminations show that our method achieves state-of-the-art performance with much lower computational cost on blind image inpainting. Our code is available at https://github.com/zhenglab/TransCNN-HAE.","PeriodicalId":412792,"journal":{"name":"Proceedings of the 30th ACM International Conference on Multimedia","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"TransCNN-HAE: Transformer-CNN Hybrid AutoEncoder for Blind Image Inpainting\",\"authors\":\"Haoru Zhao, Zhaorui Gu, Bing Zheng, Haiyong Zheng\",\"doi\":\"10.1145/3503161.3547848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Blind image inpainting is extremely challenging due to the unknown and multi-property complexity of contamination in different contaminated images. Current mainstream work decomposes blind image inpainting into two stages: mask estimating from the contaminated image and image inpainting based on the estimated mask, and this two-stage solution involves two CNN-based encoder-decoder architectures for estimating and inpainting separately. In this work, we propose a novel one-stage Transformer-CNN Hybrid AutoEncoder (TransCNN-HAE) for blind image inpainting, which intuitively follows the inpainting-then-reconstructing pipeline by leveraging global long-range contextual modeling of Transformer to repair contaminated regions and local short-range contextual modeling of CNN to reconstruct the repaired image. Moreover, a Cross-layer Dissimilarity Prompt (CDP) is devised to accelerate the identifying and inpainting of contaminated regions. Ablation studies validate the efficacy of both TransCNN-HAE and CDP, and extensive experiments on various datasets with multi-property contaminations show that our method achieves state-of-the-art performance with much lower computational cost on blind image inpainting. Our code is available at https://github.com/zhenglab/TransCNN-HAE.\",\"PeriodicalId\":412792,\"journal\":{\"name\":\"Proceedings of the 30th ACM International Conference on Multimedia\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 30th ACM International Conference on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3503161.3547848\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM International Conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3503161.3547848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

由于不同污染图像中污染的未知性和多属性复杂性,使得图像盲涂非常具有挑战性。目前的主流工作将盲图像补漆分解为两个阶段:从污染图像中估计掩码和基于估计掩码的图像补漆,这个两阶段的解决方案涉及两个基于cnn的编码器-解码器架构,分别用于估计和补漆。在这项工作中,我们提出了一种用于盲图像修复的新型一级变压器-CNN混合自动编码器(TransCNN-HAE),它通过利用变压器的全局远程上下文建模来修复污染区域,利用CNN的局部短程上下文建模来重建修复后的图像,直观地遵循修复-重建的管道。此外,设计了一种跨层不相似提示(CDP),以加快污染区域的识别和涂漆。烧蚀研究验证了TransCNN-HAE和CDP的有效性,并且在具有多属性污染的各种数据集上进行的大量实验表明,我们的方法在盲图像喷漆上实现了最先进的性能,计算成本更低。我们的代码可在https://github.com/zhenglab/TransCNN-HAE上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TransCNN-HAE: Transformer-CNN Hybrid AutoEncoder for Blind Image Inpainting
Blind image inpainting is extremely challenging due to the unknown and multi-property complexity of contamination in different contaminated images. Current mainstream work decomposes blind image inpainting into two stages: mask estimating from the contaminated image and image inpainting based on the estimated mask, and this two-stage solution involves two CNN-based encoder-decoder architectures for estimating and inpainting separately. In this work, we propose a novel one-stage Transformer-CNN Hybrid AutoEncoder (TransCNN-HAE) for blind image inpainting, which intuitively follows the inpainting-then-reconstructing pipeline by leveraging global long-range contextual modeling of Transformer to repair contaminated regions and local short-range contextual modeling of CNN to reconstruct the repaired image. Moreover, a Cross-layer Dissimilarity Prompt (CDP) is devised to accelerate the identifying and inpainting of contaminated regions. Ablation studies validate the efficacy of both TransCNN-HAE and CDP, and extensive experiments on various datasets with multi-property contaminations show that our method achieves state-of-the-art performance with much lower computational cost on blind image inpainting. Our code is available at https://github.com/zhenglab/TransCNN-HAE.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Anti-Bottleneck Multi-Modal Graph Learning Network for Personalized Micro-video Recommendation Composite Photograph Harmonization with Complete Background Cues Domain-Specific Conditional Jigsaw Adaptation for Enhancing transferability and Discriminability Enabling Effective Low-Light Perception using Ubiquitous Low-Cost Visible-Light Cameras Restoration of Analog Videos Using Swin-UNet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1