{"title":"直流电场对双电线火焰蔓延的影响","authors":"Jeong Park, S. H. Park, M. Cha, S. Chung","doi":"10.1115/ajkfluids2019-4693","DOIUrl":null,"url":null,"abstract":"\n The effect of DC electric field on the behaviors of spreading flame over polyethylene (PE)-insulated twin electrical wires was investigated by varying the wire gap (S) and voltage (VDC). The twin flame spreads with the same flame spread rate (FSR) independently when no electric field is applied. With an applied DC electric field, the twin flame interacts such that FSR, flame width, and the leaning direction of interacting twin flames vary appreciably. The spread rate for wire flame with negative voltage (SF–) was larger than that with positive voltage (SF+) during transient period and then the two became the same in a developed region (a quasi-steady spread). Such a flame behavior could be grouped into two: twin flame spread (regime I) and single flame spread (regime II) after the extinction of SF+. Each regime could be categorized into three sub-regimes depending on S and VDC. For small VDC, the flame leaned toward the burnt wire, reducing FSR. With further increasing VDC, FSR increased due to the ionic wind effect and then decreased via the mass loss of molten PE. These non-monotonic behavior of FSR with DC voltage can be attributed the behaviors of molten PE, exhibiting dripping, electrospray, and di-electrophoresis phenomena. For further increased voltage, the flames were extinguished by streamer generation and an electrical short occurred at excessive voltages.","PeriodicalId":403423,"journal":{"name":"Volume 3A: Fluid Applications and Systems","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of DC Electric Fields on Flame Spread Over Twin Electrical Wires\",\"authors\":\"Jeong Park, S. H. Park, M. Cha, S. Chung\",\"doi\":\"10.1115/ajkfluids2019-4693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The effect of DC electric field on the behaviors of spreading flame over polyethylene (PE)-insulated twin electrical wires was investigated by varying the wire gap (S) and voltage (VDC). The twin flame spreads with the same flame spread rate (FSR) independently when no electric field is applied. With an applied DC electric field, the twin flame interacts such that FSR, flame width, and the leaning direction of interacting twin flames vary appreciably. The spread rate for wire flame with negative voltage (SF–) was larger than that with positive voltage (SF+) during transient period and then the two became the same in a developed region (a quasi-steady spread). Such a flame behavior could be grouped into two: twin flame spread (regime I) and single flame spread (regime II) after the extinction of SF+. Each regime could be categorized into three sub-regimes depending on S and VDC. For small VDC, the flame leaned toward the burnt wire, reducing FSR. With further increasing VDC, FSR increased due to the ionic wind effect and then decreased via the mass loss of molten PE. These non-monotonic behavior of FSR with DC voltage can be attributed the behaviors of molten PE, exhibiting dripping, electrospray, and di-electrophoresis phenomena. For further increased voltage, the flames were extinguished by streamer generation and an electrical short occurred at excessive voltages.\",\"PeriodicalId\":403423,\"journal\":{\"name\":\"Volume 3A: Fluid Applications and Systems\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 3A: Fluid Applications and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/ajkfluids2019-4693\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3A: Fluid Applications and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ajkfluids2019-4693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of DC Electric Fields on Flame Spread Over Twin Electrical Wires
The effect of DC electric field on the behaviors of spreading flame over polyethylene (PE)-insulated twin electrical wires was investigated by varying the wire gap (S) and voltage (VDC). The twin flame spreads with the same flame spread rate (FSR) independently when no electric field is applied. With an applied DC electric field, the twin flame interacts such that FSR, flame width, and the leaning direction of interacting twin flames vary appreciably. The spread rate for wire flame with negative voltage (SF–) was larger than that with positive voltage (SF+) during transient period and then the two became the same in a developed region (a quasi-steady spread). Such a flame behavior could be grouped into two: twin flame spread (regime I) and single flame spread (regime II) after the extinction of SF+. Each regime could be categorized into three sub-regimes depending on S and VDC. For small VDC, the flame leaned toward the burnt wire, reducing FSR. With further increasing VDC, FSR increased due to the ionic wind effect and then decreased via the mass loss of molten PE. These non-monotonic behavior of FSR with DC voltage can be attributed the behaviors of molten PE, exhibiting dripping, electrospray, and di-electrophoresis phenomena. For further increased voltage, the flames were extinguished by streamer generation and an electrical short occurred at excessive voltages.