利用SMOTE算法改进YouTube不平衡数据集的情绪分类

Phakhawat Sarakit, T. Theeramunkong, C. Haruechaiyasak
{"title":"利用SMOTE算法改进YouTube不平衡数据集的情绪分类","authors":"Phakhawat Sarakit, T. Theeramunkong, C. Haruechaiyasak","doi":"10.1109/ICAICTA.2015.7335373","DOIUrl":null,"url":null,"abstract":"The imbalanced dataset problem triggers degradation of classification performance in several data mining applications including pattern recognition, text categorization, and information filtering tasks. To improve emotion classification performance, we use a sampling-based algorithm called SMOTE, which oversamples instances in a minority class to the number of those from the majority class. YouTube dataset was balanced using the SMOTE technique and tested using three machine learning algorithms, namely multinomial Naïve Bayes (MNB), decision tree (DT) and support vector machines (SVM). As a result, SVM achieves the highest accuracy with 93.30% on filtering task and 89.44% on classification. The SMOTE technique can solve the imbalanced data problem and obtain an improved classification result.","PeriodicalId":319020,"journal":{"name":"2015 2nd International Conference on Advanced Informatics: Concepts, Theory and Applications (ICAICTA)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Improving emotion classification in imbalanced YouTube dataset using SMOTE algorithm\",\"authors\":\"Phakhawat Sarakit, T. Theeramunkong, C. Haruechaiyasak\",\"doi\":\"10.1109/ICAICTA.2015.7335373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The imbalanced dataset problem triggers degradation of classification performance in several data mining applications including pattern recognition, text categorization, and information filtering tasks. To improve emotion classification performance, we use a sampling-based algorithm called SMOTE, which oversamples instances in a minority class to the number of those from the majority class. YouTube dataset was balanced using the SMOTE technique and tested using three machine learning algorithms, namely multinomial Naïve Bayes (MNB), decision tree (DT) and support vector machines (SVM). As a result, SVM achieves the highest accuracy with 93.30% on filtering task and 89.44% on classification. The SMOTE technique can solve the imbalanced data problem and obtain an improved classification result.\",\"PeriodicalId\":319020,\"journal\":{\"name\":\"2015 2nd International Conference on Advanced Informatics: Concepts, Theory and Applications (ICAICTA)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 2nd International Conference on Advanced Informatics: Concepts, Theory and Applications (ICAICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAICTA.2015.7335373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 2nd International Conference on Advanced Informatics: Concepts, Theory and Applications (ICAICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAICTA.2015.7335373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

在模式识别、文本分类和信息过滤任务等数据挖掘应用中,数据集不平衡问题会导致分类性能下降。为了提高情绪分类性能,我们使用了一种名为SMOTE的基于采样的算法,该算法对少数类的实例进行过采样,使其达到多数类的数量。使用SMOTE技术平衡YouTube数据集,并使用三种机器学习算法进行测试,即多项式Naïve贝叶斯(MNB),决策树(DT)和支持向量机(SVM)。结果表明,SVM在过滤任务上的准确率为93.30%,在分类任务上的准确率为89.44%。SMOTE技术可以解决数据不平衡的问题,获得较好的分类效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving emotion classification in imbalanced YouTube dataset using SMOTE algorithm
The imbalanced dataset problem triggers degradation of classification performance in several data mining applications including pattern recognition, text categorization, and information filtering tasks. To improve emotion classification performance, we use a sampling-based algorithm called SMOTE, which oversamples instances in a minority class to the number of those from the majority class. YouTube dataset was balanced using the SMOTE technique and tested using three machine learning algorithms, namely multinomial Naïve Bayes (MNB), decision tree (DT) and support vector machines (SVM). As a result, SVM achieves the highest accuracy with 93.30% on filtering task and 89.44% on classification. The SMOTE technique can solve the imbalanced data problem and obtain an improved classification result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A framework for laptop review analysis Incorporating text information on presentation slides for spoken lecture retrieval TippyDB: Geographically-aware distributed NoSQL Key-Value store Handling arbitrary polygon query based on the boolean overlay on a geographical information system Relation between EMG signal activation and time lags using feature analysis during dynamic contraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1