药物相关网页分类的多任务线性依赖模型

Ruiguang Hu, Mengxi Hao, Songzhi Jin, Hao Wang, Shibo Gao, Liping Xiao
{"title":"药物相关网页分类的多任务线性依赖模型","authors":"Ruiguang Hu, Mengxi Hao, Songzhi Jin, Hao Wang, Shibo Gao, Liping Xiao","doi":"10.23919/ICIF.2017.8009781","DOIUrl":null,"url":null,"abstract":"In this paper, Multi-Task Linear Dependency Modeling is proposed to distinguish drug-related webpages that contain lots of images and text. Linear Dependency Modeling exploits semantic relations between images features and text features, and Multi-Task Learning takes advantage of metadata of webpages. Meaningful information of webpages can be made use of fully to improve classification accuracy. Experimental results show that Multi-Task Linear Dependency Modeling outperforms existing decision level and feature level combination methods and achieves the best performance.","PeriodicalId":148407,"journal":{"name":"2017 20th International Conference on Information Fusion (Fusion)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Multi-Task Linear Dependency Modeling for drug-related webpages classification\",\"authors\":\"Ruiguang Hu, Mengxi Hao, Songzhi Jin, Hao Wang, Shibo Gao, Liping Xiao\",\"doi\":\"10.23919/ICIF.2017.8009781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, Multi-Task Linear Dependency Modeling is proposed to distinguish drug-related webpages that contain lots of images and text. Linear Dependency Modeling exploits semantic relations between images features and text features, and Multi-Task Learning takes advantage of metadata of webpages. Meaningful information of webpages can be made use of fully to improve classification accuracy. Experimental results show that Multi-Task Linear Dependency Modeling outperforms existing decision level and feature level combination methods and achieves the best performance.\",\"PeriodicalId\":148407,\"journal\":{\"name\":\"2017 20th International Conference on Information Fusion (Fusion)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 20th International Conference on Information Fusion (Fusion)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICIF.2017.8009781\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 20th International Conference on Information Fusion (Fusion)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICIF.2017.8009781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种多任务线性依赖模型,用于识别含有大量图像和文本的药物相关网页。线性依赖模型利用图像特征和文本特征之间的语义关系,多任务学习利用网页元数据。可以充分利用网页的有意义信息,提高分类精度。实验结果表明,多任务线性依赖建模方法优于现有的决策级和特征级组合方法,达到了最佳的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-Task Linear Dependency Modeling for drug-related webpages classification
In this paper, Multi-Task Linear Dependency Modeling is proposed to distinguish drug-related webpages that contain lots of images and text. Linear Dependency Modeling exploits semantic relations between images features and text features, and Multi-Task Learning takes advantage of metadata of webpages. Meaningful information of webpages can be made use of fully to improve classification accuracy. Experimental results show that Multi-Task Linear Dependency Modeling outperforms existing decision level and feature level combination methods and achieves the best performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep learning for situational understanding Event state based particle filter for ball event detection in volleyball game analysis Hybrid regularization for compressed sensing MRI: Exploiting shearlet transform and group-sparsity total variation A risk-based sensor management using random finite sets and POMDP Track a smoothly maneuvering target based on trajectory estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1