{"title":"药物相关网页分类的多任务线性依赖模型","authors":"Ruiguang Hu, Mengxi Hao, Songzhi Jin, Hao Wang, Shibo Gao, Liping Xiao","doi":"10.23919/ICIF.2017.8009781","DOIUrl":null,"url":null,"abstract":"In this paper, Multi-Task Linear Dependency Modeling is proposed to distinguish drug-related webpages that contain lots of images and text. Linear Dependency Modeling exploits semantic relations between images features and text features, and Multi-Task Learning takes advantage of metadata of webpages. Meaningful information of webpages can be made use of fully to improve classification accuracy. Experimental results show that Multi-Task Linear Dependency Modeling outperforms existing decision level and feature level combination methods and achieves the best performance.","PeriodicalId":148407,"journal":{"name":"2017 20th International Conference on Information Fusion (Fusion)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Multi-Task Linear Dependency Modeling for drug-related webpages classification\",\"authors\":\"Ruiguang Hu, Mengxi Hao, Songzhi Jin, Hao Wang, Shibo Gao, Liping Xiao\",\"doi\":\"10.23919/ICIF.2017.8009781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, Multi-Task Linear Dependency Modeling is proposed to distinguish drug-related webpages that contain lots of images and text. Linear Dependency Modeling exploits semantic relations between images features and text features, and Multi-Task Learning takes advantage of metadata of webpages. Meaningful information of webpages can be made use of fully to improve classification accuracy. Experimental results show that Multi-Task Linear Dependency Modeling outperforms existing decision level and feature level combination methods and achieves the best performance.\",\"PeriodicalId\":148407,\"journal\":{\"name\":\"2017 20th International Conference on Information Fusion (Fusion)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 20th International Conference on Information Fusion (Fusion)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICIF.2017.8009781\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 20th International Conference on Information Fusion (Fusion)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICIF.2017.8009781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-Task Linear Dependency Modeling for drug-related webpages classification
In this paper, Multi-Task Linear Dependency Modeling is proposed to distinguish drug-related webpages that contain lots of images and text. Linear Dependency Modeling exploits semantic relations between images features and text features, and Multi-Task Learning takes advantage of metadata of webpages. Meaningful information of webpages can be made use of fully to improve classification accuracy. Experimental results show that Multi-Task Linear Dependency Modeling outperforms existing decision level and feature level combination methods and achieves the best performance.