基于分层代理的云数据中心资源管理体系结构

F. Farahnakian, T. Pahikkala, P. Liljeberg, J. Plosila
{"title":"基于分层代理的云数据中心资源管理体系结构","authors":"F. Farahnakian, T. Pahikkala, P. Liljeberg, J. Plosila","doi":"10.1109/CLOUD.2014.128","DOIUrl":null,"url":null,"abstract":"In order to resource management in a large-scale data center, we present a hierarchical agent-based architecture. In this architecture, multi agents cooperate together to minimize the number of active physical machines according to the current resource requirements. We proposed a local agent in each physical machine (PM) to determine the PM's status and a global agent to optimizes VM placement based on PM's status. Experimental results show the proposed architecture can minimize energy consumption while maintaining an acceptable QoS.","PeriodicalId":288542,"journal":{"name":"2014 IEEE 7th International Conference on Cloud Computing","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Hierarchical Agent-Based Architecture for Resource Management in Cloud Data Centers\",\"authors\":\"F. Farahnakian, T. Pahikkala, P. Liljeberg, J. Plosila\",\"doi\":\"10.1109/CLOUD.2014.128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to resource management in a large-scale data center, we present a hierarchical agent-based architecture. In this architecture, multi agents cooperate together to minimize the number of active physical machines according to the current resource requirements. We proposed a local agent in each physical machine (PM) to determine the PM's status and a global agent to optimizes VM placement based on PM's status. Experimental results show the proposed architecture can minimize energy consumption while maintaining an acceptable QoS.\",\"PeriodicalId\":288542,\"journal\":{\"name\":\"2014 IEEE 7th International Conference on Cloud Computing\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 7th International Conference on Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLOUD.2014.128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 7th International Conference on Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLOUD.2014.128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

为了实现大规模数据中心的资源管理,提出了一种基于分层代理的资源管理体系结构。在这个体系结构中,多个代理一起合作,根据当前的资源需求最小化活动物理机的数量。我们在每台物理机(PM)中提出了一个本地代理来确定PM的状态,并提出了一个全局代理来根据PM的状态优化VM的放置。实验结果表明,该架构可以在保持可接受的QoS的同时最小化能耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hierarchical Agent-Based Architecture for Resource Management in Cloud Data Centers
In order to resource management in a large-scale data center, we present a hierarchical agent-based architecture. In this architecture, multi agents cooperate together to minimize the number of active physical machines according to the current resource requirements. We proposed a local agent in each physical machine (PM) to determine the PM's status and a global agent to optimizes VM placement based on PM's status. Experimental results show the proposed architecture can minimize energy consumption while maintaining an acceptable QoS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
User-Friendly Visualization of Cloud Quality Energy and Performance-Aware Task Scheduling in a Mobile Cloud Computing Environment MediaPaaS: A Cloud-Based Media Processing Platform for Elastic Live Broadcasting AppCloak: Rapid Migration of Legacy Applications into Cloud Introducing SSDs to the Hadoop MapReduce Framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1