低质量比水翼颤振实验模型设计程序

Olivia D'Ubaldo, C. Rizzo, D. Dessì, F. Passacantilli
{"title":"低质量比水翼颤振实验模型设计程序","authors":"Olivia D'Ubaldo, C. Rizzo, D. Dessì, F. Passacantilli","doi":"10.2218/marine2021.6859","DOIUrl":null,"url":null,"abstract":"The present paper describes the design concept and specifications of a hydrofoil model to be actually tested for flutter experimental analysis at CNR-INM Institute of Marine Engineering towing tank in Rome. The design procedure is the result of concurrent application of numerical and analytical approaches: CAD models are used for geometrical modelling and mass properties calculations, FEM is employed to calculate model stiffness, natural frequencies and verify model strength, and Theodorsen analytical approach is implemented to predict flutter velocity. Theodorsen approach allows calculating the flutter condition as a function of physical parameters as geometries, mass and stiffness, assuming two-dimensional, incompressible aerodynamic coefficients and sinusoidal harmonic motion at flutter instability condition (zero damping condition). As first step, the authors built a broad literature review upon past flutter experimental experiences in both air and water flow focusing on the troubles linked to the increase of flow density and viscosity, the technical issues to be considered when designing the flutter model and setting up experimental campaigns. Most of the flutter experimental campaigns reported in the literature deal with high mass ratio models as aerofoils operating in light, low viscosity fluids; less common are experimental reports about low mass ratio models as light hydrofoils. The design a dynamical scale of a hydrofoil model, flutter-tested in 1971, chosen as main reference. The model is designed to encounter flutter at a speed compatible with the range of velocity imposed by the water tank facilities. The combination of design parameters is optimised to meet facilities speed range, construction issues and Theodorsen approach application field.","PeriodicalId":367395,"journal":{"name":"The 9th Conference on Computational Methods in Marine Engineering (Marine 2021)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low mass ratio hydrofoil flutter experimental model design procedure\",\"authors\":\"Olivia D'Ubaldo, C. Rizzo, D. Dessì, F. Passacantilli\",\"doi\":\"10.2218/marine2021.6859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present paper describes the design concept and specifications of a hydrofoil model to be actually tested for flutter experimental analysis at CNR-INM Institute of Marine Engineering towing tank in Rome. The design procedure is the result of concurrent application of numerical and analytical approaches: CAD models are used for geometrical modelling and mass properties calculations, FEM is employed to calculate model stiffness, natural frequencies and verify model strength, and Theodorsen analytical approach is implemented to predict flutter velocity. Theodorsen approach allows calculating the flutter condition as a function of physical parameters as geometries, mass and stiffness, assuming two-dimensional, incompressible aerodynamic coefficients and sinusoidal harmonic motion at flutter instability condition (zero damping condition). As first step, the authors built a broad literature review upon past flutter experimental experiences in both air and water flow focusing on the troubles linked to the increase of flow density and viscosity, the technical issues to be considered when designing the flutter model and setting up experimental campaigns. Most of the flutter experimental campaigns reported in the literature deal with high mass ratio models as aerofoils operating in light, low viscosity fluids; less common are experimental reports about low mass ratio models as light hydrofoils. The design a dynamical scale of a hydrofoil model, flutter-tested in 1971, chosen as main reference. The model is designed to encounter flutter at a speed compatible with the range of velocity imposed by the water tank facilities. The combination of design parameters is optimised to meet facilities speed range, construction issues and Theodorsen approach application field.\",\"PeriodicalId\":367395,\"journal\":{\"name\":\"The 9th Conference on Computational Methods in Marine Engineering (Marine 2021)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 9th Conference on Computational Methods in Marine Engineering (Marine 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2218/marine2021.6859\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 9th Conference on Computational Methods in Marine Engineering (Marine 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2218/marine2021.6859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了在罗马CNR-INM海洋工程研究所拖曳水箱中进行颤振试验分析的水翼模型的设计思想和规格。设计过程是数值方法和解析方法同时应用的结果:采用CAD模型进行几何建模和质量特性计算,采用FEM计算模型刚度、固有频率和验证模型强度,采用Theodorsen解析方法预测颤振速度。Theodorsen方法允许计算颤振条件作为物理参数的函数,如几何形状,质量和刚度,假设二维,不可压缩气动系数和颤振不稳定条件下的正弦谐波运动(零阻尼条件)。作为第一步,作者对过去空气和水的颤振实验经验进行了广泛的文献综述,重点关注与流动密度和粘度增加有关的问题,以及设计颤振模型和建立实验活动时需要考虑的技术问题。文献中报道的大多数颤振实验活动都涉及高质量比模型,如在轻、低粘度流体中工作的机翼;较不常见的是实验报告低质量比模型作为轻型水翼。设计了1971年进行过颤振试验的水翼船模型的动力比例尺,作为主要参考。该模型被设计为在与水箱设施施加的速度范围相匹配的速度下遇到颤振。设计参数的组合优化,以满足设施的速度范围,施工问题和Theodorsen方法的应用领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Low mass ratio hydrofoil flutter experimental model design procedure
The present paper describes the design concept and specifications of a hydrofoil model to be actually tested for flutter experimental analysis at CNR-INM Institute of Marine Engineering towing tank in Rome. The design procedure is the result of concurrent application of numerical and analytical approaches: CAD models are used for geometrical modelling and mass properties calculations, FEM is employed to calculate model stiffness, natural frequencies and verify model strength, and Theodorsen analytical approach is implemented to predict flutter velocity. Theodorsen approach allows calculating the flutter condition as a function of physical parameters as geometries, mass and stiffness, assuming two-dimensional, incompressible aerodynamic coefficients and sinusoidal harmonic motion at flutter instability condition (zero damping condition). As first step, the authors built a broad literature review upon past flutter experimental experiences in both air and water flow focusing on the troubles linked to the increase of flow density and viscosity, the technical issues to be considered when designing the flutter model and setting up experimental campaigns. Most of the flutter experimental campaigns reported in the literature deal with high mass ratio models as aerofoils operating in light, low viscosity fluids; less common are experimental reports about low mass ratio models as light hydrofoils. The design a dynamical scale of a hydrofoil model, flutter-tested in 1971, chosen as main reference. The model is designed to encounter flutter at a speed compatible with the range of velocity imposed by the water tank facilities. The combination of design parameters is optimised to meet facilities speed range, construction issues and Theodorsen approach application field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Alternate Method For Determining Resistance Of Ship With Fouled Hull Numerical modelling of water ballast. Application to fish cages. Research of Root Cavitation Erosion Numerical Simulation of Strongly Coupled Liquid Fluids in Tanks inside of Floating Body and its Motions with Incoming Lateral Regular Waves CFD code comparison, verification and validation for a FOWT semi-submersible floater (OC4 Phase II)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1