Junesol Song, C. Kee, Byungwoon Park, Heungwon Park, Seungwoo Seo
{"title":"考虑对流层时延随高度变化的紧凑网络RTK校正组合","authors":"Junesol Song, C. Kee, Byungwoon Park, Heungwon Park, Seungwoo Seo","doi":"10.1109/PLANS.2014.6851362","DOIUrl":null,"url":null,"abstract":"In this paper, using the additional relation between tropospheric delay and height variation, we combined multiple carrier phase corrections from multiple reference stations of Network RTK. The Low-order Surface Method (LSM) is used as a base correction interpolation method. The LSM including height difference is also considered and its gradient coefficients are calculated as minimum-norm solutions. Real GPS data from multiple reference station network are collected and Compact RTK and Master-Auxiliary Concept (MAC) corrections are generated. Finally, generated corrections are tested for various correction interpolation methods including proposed algorithm and their performances are compared.","PeriodicalId":371808,"journal":{"name":"2014 IEEE/ION Position, Location and Navigation Symposium - PLANS 2014","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Correction combination of compact network RTK considering tropospheric delay variation over height\",\"authors\":\"Junesol Song, C. Kee, Byungwoon Park, Heungwon Park, Seungwoo Seo\",\"doi\":\"10.1109/PLANS.2014.6851362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, using the additional relation between tropospheric delay and height variation, we combined multiple carrier phase corrections from multiple reference stations of Network RTK. The Low-order Surface Method (LSM) is used as a base correction interpolation method. The LSM including height difference is also considered and its gradient coefficients are calculated as minimum-norm solutions. Real GPS data from multiple reference station network are collected and Compact RTK and Master-Auxiliary Concept (MAC) corrections are generated. Finally, generated corrections are tested for various correction interpolation methods including proposed algorithm and their performances are compared.\",\"PeriodicalId\":371808,\"journal\":{\"name\":\"2014 IEEE/ION Position, Location and Navigation Symposium - PLANS 2014\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE/ION Position, Location and Navigation Symposium - PLANS 2014\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PLANS.2014.6851362\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE/ION Position, Location and Navigation Symposium - PLANS 2014","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLANS.2014.6851362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Correction combination of compact network RTK considering tropospheric delay variation over height
In this paper, using the additional relation between tropospheric delay and height variation, we combined multiple carrier phase corrections from multiple reference stations of Network RTK. The Low-order Surface Method (LSM) is used as a base correction interpolation method. The LSM including height difference is also considered and its gradient coefficients are calculated as minimum-norm solutions. Real GPS data from multiple reference station network are collected and Compact RTK and Master-Auxiliary Concept (MAC) corrections are generated. Finally, generated corrections are tested for various correction interpolation methods including proposed algorithm and their performances are compared.