考虑精确良率计算的时序变化敏感高级综合

Jongyoon Jung, Taewhan Kim
{"title":"考虑精确良率计算的时序变化敏感高级综合","authors":"Jongyoon Jung, Taewhan Kim","doi":"10.1109/ICCD.2009.5413152","DOIUrl":null,"url":null,"abstract":"This work proposes a new yield computation technique dedicated to HLS, which is an essential component in timing variation-aware HLS research field. The SSTAs used by the current timing variation-aware HLS techniques cannot support the following two critical factors at all: (i) non-Gaussian delay distribution of ‘module patterns’ used in scheduling and binding and (ii) correlation of timing variation between module patterns. However, without considering these factors, the synthesis results would be far less accurate in timing, being very likely to fail in timing closure. Even though there are advances in the logic level for SSTAs that support (i) and (ii), the manipulation and computation of (i) and (ii) in the course of scheduling and binding in HLS are unique in that there are no concepts of module sharing and performance yield computation in the logic level. Specifically, we propose a novel yield computation technique to handle the non-Gaussian timing variation of module patterns, where the sum and max operations are closed-form formulas and the timing correlation between modules used in computing performance yield is preserved to the first-order form. Experimental results show that our synthesis using the proposed yield computation technique reduces the latency by 24.1% and 28.8% under 95% and 90% performance yield constraints over that by the conventional HLS, respectively. Further, it is confirmed that our synthesis results are near optimal with less than 3.1% error on average.","PeriodicalId":256908,"journal":{"name":"2009 IEEE International Conference on Computer Design","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Timing variation-aware high-level synthesis considering accurate yield computation\",\"authors\":\"Jongyoon Jung, Taewhan Kim\",\"doi\":\"10.1109/ICCD.2009.5413152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work proposes a new yield computation technique dedicated to HLS, which is an essential component in timing variation-aware HLS research field. The SSTAs used by the current timing variation-aware HLS techniques cannot support the following two critical factors at all: (i) non-Gaussian delay distribution of ‘module patterns’ used in scheduling and binding and (ii) correlation of timing variation between module patterns. However, without considering these factors, the synthesis results would be far less accurate in timing, being very likely to fail in timing closure. Even though there are advances in the logic level for SSTAs that support (i) and (ii), the manipulation and computation of (i) and (ii) in the course of scheduling and binding in HLS are unique in that there are no concepts of module sharing and performance yield computation in the logic level. Specifically, we propose a novel yield computation technique to handle the non-Gaussian timing variation of module patterns, where the sum and max operations are closed-form formulas and the timing correlation between modules used in computing performance yield is preserved to the first-order form. Experimental results show that our synthesis using the proposed yield computation technique reduces the latency by 24.1% and 28.8% under 95% and 90% performance yield constraints over that by the conventional HLS, respectively. Further, it is confirmed that our synthesis results are near optimal with less than 3.1% error on average.\",\"PeriodicalId\":256908,\"journal\":{\"name\":\"2009 IEEE International Conference on Computer Design\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Computer Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD.2009.5413152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Computer Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2009.5413152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文提出了一种新的HLS产率计算方法,是时变敏感HLS研究领域的重要组成部分。当前感知时序变化的HLS技术所使用的ssta根本不能支持以下两个关键因素:(i)调度和绑定中使用的“模块模式”的非高斯延迟分布;(ii)模块模式之间时序变化的相关性。然而,如果不考虑这些因素,合成结果在计时上的准确性将大大降低,很可能在计时关闭中失败。尽管支持(i)和(ii)的ssta在逻辑层面上有所进步,但HLS在调度和绑定过程中对(i)和(ii)的操作和计算是独特的,因为在逻辑层面没有模块共享和性能良率计算的概念。具体而言,我们提出了一种新的产率计算技术来处理模块模式的非高斯时序变化,其中和和和最大运算是封闭形式的公式,并且用于计算性能产率的模块之间的时序相关性保持为一阶形式。实验结果表明,在95%和90%的性能良率约束下,我们的合成比传统的HLS分别减少了24.1%和28.8%的延迟。进一步证实,我们的合成结果接近最优,平均误差小于3.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Timing variation-aware high-level synthesis considering accurate yield computation
This work proposes a new yield computation technique dedicated to HLS, which is an essential component in timing variation-aware HLS research field. The SSTAs used by the current timing variation-aware HLS techniques cannot support the following two critical factors at all: (i) non-Gaussian delay distribution of ‘module patterns’ used in scheduling and binding and (ii) correlation of timing variation between module patterns. However, without considering these factors, the synthesis results would be far less accurate in timing, being very likely to fail in timing closure. Even though there are advances in the logic level for SSTAs that support (i) and (ii), the manipulation and computation of (i) and (ii) in the course of scheduling and binding in HLS are unique in that there are no concepts of module sharing and performance yield computation in the logic level. Specifically, we propose a novel yield computation technique to handle the non-Gaussian timing variation of module patterns, where the sum and max operations are closed-form formulas and the timing correlation between modules used in computing performance yield is preserved to the first-order form. Experimental results show that our synthesis using the proposed yield computation technique reduces the latency by 24.1% and 28.8% under 95% and 90% performance yield constraints over that by the conventional HLS, respectively. Further, it is confirmed that our synthesis results are near optimal with less than 3.1% error on average.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Empirical performance models for 3T1D memories A novel SoC architecture on FPGA for ultra fast face detection A Technology-Agnostic Simulation Environment (TASE) for iterative custom IC design across processes Low-overhead error detection for Networks-on-Chip Interconnect performance corners considering crosstalk noise
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1