{"title":"基于PID神经网络的多变量系统辨识","authors":"Huailin Shu, Xiaogang Wang, Zihang Huang","doi":"10.1109/ICICIP.2015.7388168","DOIUrl":null,"url":null,"abstract":"System identification is the basis for control system design. For linear time-invariant systems have a variety of identification methods, identification methods for nonlinear dynamic system is still in the exploratory stage. Nonlinear identification method based on neural network is a simple and effective general method that does not require too much priori experience about the system to be identified. Through training and learning, the network weights are corrected to achieve the purpose of system identification. The paper is about the identification of multivariable nonlinear dynamic system based on PID neural network. The structure and algorithm of PID neural network are introduced and the properties and characteristics are analyzed. The system identification is completed and the results are fast convergence.","PeriodicalId":265426,"journal":{"name":"2015 Sixth International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"248 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Identification of multivariate system based on PID neural network\",\"authors\":\"Huailin Shu, Xiaogang Wang, Zihang Huang\",\"doi\":\"10.1109/ICICIP.2015.7388168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"System identification is the basis for control system design. For linear time-invariant systems have a variety of identification methods, identification methods for nonlinear dynamic system is still in the exploratory stage. Nonlinear identification method based on neural network is a simple and effective general method that does not require too much priori experience about the system to be identified. Through training and learning, the network weights are corrected to achieve the purpose of system identification. The paper is about the identification of multivariable nonlinear dynamic system based on PID neural network. The structure and algorithm of PID neural network are introduced and the properties and characteristics are analyzed. The system identification is completed and the results are fast convergence.\",\"PeriodicalId\":265426,\"journal\":{\"name\":\"2015 Sixth International Conference on Intelligent Control and Information Processing (ICICIP)\",\"volume\":\"248 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Sixth International Conference on Intelligent Control and Information Processing (ICICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICIP.2015.7388168\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Sixth International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP.2015.7388168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Identification of multivariate system based on PID neural network
System identification is the basis for control system design. For linear time-invariant systems have a variety of identification methods, identification methods for nonlinear dynamic system is still in the exploratory stage. Nonlinear identification method based on neural network is a simple and effective general method that does not require too much priori experience about the system to be identified. Through training and learning, the network weights are corrected to achieve the purpose of system identification. The paper is about the identification of multivariable nonlinear dynamic system based on PID neural network. The structure and algorithm of PID neural network are introduced and the properties and characteristics are analyzed. The system identification is completed and the results are fast convergence.