{"title":"装配中错误检测和恢复的机器学习方法","authors":"L. Lopes, L. Camarinha-Matos","doi":"10.1109/IROS.1995.525884","DOIUrl":null,"url":null,"abstract":"Research results concerning error detection and recovery in robotized assembly systems, key components of flexible manufacturing systems, are presented. A planning strategy and domain knowledge for nominal plan execution and for error recovery is described. A supervision architecture provides, at different levels of abstraction, functions for dispatching actions, monitoring their execution, and diagnosing and recovering from failures. Through the use of machine learning techniques, the supervision architecture will be given capabilities for improving its performance over time. Particular attention is given to the inductive generation of structured classification knowledge for diagnosis.","PeriodicalId":124483,"journal":{"name":"Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"A machine learning approach to error detection and recovery in assembly\",\"authors\":\"L. Lopes, L. Camarinha-Matos\",\"doi\":\"10.1109/IROS.1995.525884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Research results concerning error detection and recovery in robotized assembly systems, key components of flexible manufacturing systems, are presented. A planning strategy and domain knowledge for nominal plan execution and for error recovery is described. A supervision architecture provides, at different levels of abstraction, functions for dispatching actions, monitoring their execution, and diagnosing and recovering from failures. Through the use of machine learning techniques, the supervision architecture will be given capabilities for improving its performance over time. Particular attention is given to the inductive generation of structured classification knowledge for diagnosis.\",\"PeriodicalId\":124483,\"journal\":{\"name\":\"Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.1995.525884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.1995.525884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

介绍了柔性制造系统的关键部件——机器人装配系统中错误检测与恢复的研究成果。描述了用于名义计划执行和错误恢复的规划策略和领域知识。监督体系结构在不同的抽象级别上提供了调度操作、监视其执行以及诊断和从故障中恢复的功能。通过使用机器学习技术,监督架构将随着时间的推移而提高其性能。特别关注结构化分类知识的归纳生成用于诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A machine learning approach to error detection and recovery in assembly
Research results concerning error detection and recovery in robotized assembly systems, key components of flexible manufacturing systems, are presented. A planning strategy and domain knowledge for nominal plan execution and for error recovery is described. A supervision architecture provides, at different levels of abstraction, functions for dispatching actions, monitoring their execution, and diagnosing and recovering from failures. Through the use of machine learning techniques, the supervision architecture will be given capabilities for improving its performance over time. Particular attention is given to the inductive generation of structured classification knowledge for diagnosis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The automatic detection and visual tracking of moving objects by eye-in-hand robotic systems Decentralized control of robots for dynamic coordination Cooperation between the human operator and the multi-agent robotic system: evaluation of agent monitoring methods for the human interface system Series elastic actuators Toward a seven axis haptic device
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1